
Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

Research Article

Neural network guided adjoint computations in dual weighted
residual error estimation

Julian Roth1 · Max Schröder1 · Thomas Wick1,2

Received: 30 September 2021 / Accepted: 5 January 2022

© The Author(s) 2022 OPEN

Abstract
In this work, we are concerned with neural network guided goal-oriented a posteriori error estimation and adaptivity
using the dual weighted residual method. The primal problem is solved using classical Galerkin finite elements. The
adjoint problem is solved in strong form with a feedforward neural network using two or three hidden layers. The main
objective of our approach is to explore alternatives for solving the adjoint problem with greater potential of a numerical
cost reduction. The proposed algorithm is based on the general goal-oriented error estimation theorem including both
linear and nonlinear stationary partial differential equations and goal functionals. Our developments are substantiated
with some numerical experiments that include comparisons of neural network computed adjoints and classical finite
element solutions of the adjoints. In the programming software, the open-source library deal.II is successfully coupled
with LibTorch, the PyTorch C++ application programming interface.

Article Highlights

• Adjoint approximation with feedforward neural net-
work in dual-weighted residual error estimation.

• Side-by-side comparisons for accuracy and computa-
tional cost with classical finite element computations.

• Numerical experiments for linear and nonlinear prob-
lems yielding excellent effectivity indices.

Keywords Dual weighted residuals · A posteriori error estimation · Adjoint · Neural network · Deal.II · LibTorch

1 Introduction

This work is devoted to an innovative solution of the
adjoint equation in goal-oriented error estimation with
the dual weighted residual (DWR) method [3–5] (based
on former adjoint concepts [19]); we also refer to [1, 7, 22,
41] for some important early work. Since then, the DWR
method has been applied to numerous applications such
as variational inequalities [54], space-time adaptivity for
parabolic problems [51], fluid-structure interaction [20, 23,

47, 57], Maxwell’s equations [12], worst-case multi-objec-
tive adaptivity [55], the finite cell method [53], surrogate
models in stochastic inversion [37], model adaptivity in
multiscale problems [36], mesh and model adaptivity for
frictional contact [43], and adaptive multiscale predictive
modeling [39]. A summary of theoretical advancements
in efficiency estimates and multi-goal-oriented error esti-
mation was recently made in [15]. An important part in
these studies is the adjoint problem, as it measures the
sensitivity of the primal solution with respect to a single or

 * Thomas Wick, thomas.wick@ifam.uni-hannover.de; Julian Roth, roth@ifam.uni-hannover.de max.felix.schroeder@outlook.com 1AG
Wissenschaftliches Rechnen, Institut für Angewandte Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover,
Germany. 2Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Leibniz Universität
Hannover, Hannover, Germany.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-022-04938-9&domain=pdf
http://orcid.org/0000-0002-1102-6332

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

multiple given goal functionals (quantities of interest). This
adjoint solution is usually obtained by global higher order
finite element method (FEM) solutions or local higher
order approximations [5]. In general, the former is more
stable, see e.g. [18], but the latter works often sufficiently
well in practice. As the adjoint solution is only required to
evaluate the a posteriori error estimator, a cheap solution
is of interest.

Consequently, in this work, the main objective is to
explore alternatives for computing the adjoint. Due to
the universal approximation property [42], a primer can-
didate are neural networks as they are already success-
fully employed for solving ordinary and partial differential
equations (PDE) [6, 10, 24, 25, 30, 31, 33, 34, 44, 45, 50,
52, 58]. A related work in aiming to improve goal-oriented
computations with the help of neural network data-driven
finite elements is [9]. Moreover, a recent summary of the
key concepts of neural networks and deep learning was
compiled in [26]. The advantage of neural networks is a
greater flexibility as they belong to the class of meshless
methods. We follow the methodology of [44, 52] to solve
PDEs by minimizing the residual using an L-BFGS (Limited
memory Broyden-Fletcher-Goldfarb-Shanno) method [32].
We address both linear and nonlinear PDEs and goal func-
tionals in stationary settings. However, a shortcoming in
the current approach is that we need to work with strong
adjoint formulations, which may limit extensions to non-
linear coupled PDEs such as multiphysics problems and
coupled variational inequality systems. If such problems
can be restated in an energy formulation, again neural
network algorithms are known [14, 50]. Despite this draw-
back, namely the necessity of working with strong formu-
lations, the current study provides useful insights whether
at all neural network guided adjoints can be an alternative
concept for dual weighted residual error estimation. For
this reason, our resulting modified adaptive algorithm and
related numerical simulations are compared side by side in
all numerical tests to classical Galerkin finite element solu-
tions (see e.g., [11]) of the adjoint. Our proposed algorithm
is implemented in the open-source finite element library
deal.II [2] coupled with LibTorch, the PyTorch C++ API [40].

The outline of this paper is as follows: In Sect. 2, we
recapitulate the DWR method. Next, in Sect. 3 we gather
the important ingredients of the neural network solution.
This section also includes an extension of an approxima-
tion theorem from Lebesgue spaces to classical function
spaces. The algorithmic realization is addressed in Sect. 4.
Then, in Sect. 5 several numerical experiments are con-
ducted. Our findings are summarized in Sect. 6.

2 Dual weighted residual method

2.1 Abstract problem

Let U and V be Banach spaces and let A ∶ U → V∗ be a
nonlinear mapping, where V∗ denotes the dual space of V.
With this, we can define the problem: Find u ∈ U such that

Additionally, we can look at an approximation of this prob-
lem. For subspaces Ũ ⊂ U and Ṽ ⊂ V the problem reads:
Find ũ ∈ Ũ such that

Remark 1 In the following the nonlinear mapping A(⋅)(⋅)
will represent the variational formulation of a stationary
partial differential equation with the associated function
spaces U and V. We define the finite element approxima-
tion of the abstract problem as follows: Find uh ∈ Uh such
that

where Uh ⊂ U and Vh ⊂ V denote the finite element spaces.
Here the operator is given by A(uh)(⋅) ∶= a(uh)(⋅) − l(⋅)
with the linear forms a(uh)(⋅) and l(⋅).

2.2 Motivation for adaptivity

In many applications we are not necessarily interested in the
whole solution to a given problem but more explicitly only in
the evaluation of a certain quantity of interest. This quantity
of interest can often be represented mathematically by a
goal functional J ∶ U → ℝ . Here the main target is to mini-
mize the approximation error between u and uh measured
in the given goal functional J(⋅) and use the computational
resources efficiently. This can lead to the approach of [4, 5],
the DWR method, which this work will follow closely. We
also refer to [1, 3] and the prior survey paper using duality
arguments for adaptivity in differential equations [19]. We
are interested in the evaluation of the goal functional J in
the solution u ∈ U to the problem A(u)(v) = 0 for all v ∈ V
and its corresponding discrete problem uh ∈ Uh to the prob-
lem A(uh)(vh) = 0 for all vh ∈ Vh . Under the assumption that
both problems yield unique solutions, the problem state-
ment of minimizing the approximation error with respect to
a given PDE from above can be rewritten into the equivalent
optimization problem:

(1)A(u)(v) = 0 ∀v ∈ V .

A(ũ)(ṽ) = 0 ∀ṽ ∈ Ṽ .

(2)A(uh)(vh) = 0 ∀vh ∈ Vh,

min
u∈U

{J(u) − J(uh)} s.t. A(u)(v) = 0 ∀v ∈ V .

Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9 Research Article

For this constrained optimization problem we can intro-
duce the corresponding Lagrangian

with the adjoint variable z ∈ V acting as a Lagrange mul-
tiplier. For this, a stationary point needs to fulfill the first-
order necessary conditions

where J′,A′ denote the Fréchet derivatives. We see that a
defining equation for the adjoint variable arises therein.
Find z ∈ V such that

which is known as the adjoint problem. In other words,
the adjoint solution measures the variation of the primal
solution u with respect to the goal functional J(⋅) . Simi-
larly to Sect. 2.1, we apply an approximation (for instance a
finite element discretization) and obtain as discrete adjoint
problem: Find z̃ ∈ V such that

These preparations yield to the a posteriori error repre-
sentation for the approximation distance between u and
ũ measured in terms of the goal functional J(⋅) , as derived
in [46].

Theorem 1 Let (u, z) ∈ U × V solve (1) and (3). Further, let
A ∈ C

3(U, V∗) and J ∈ C
3(U,ℝ). Then for arbitrary approxi-

mations (ũ, z̃) ∈ U × V the error representation

holds true and

With e = u − ũ, e∗ = z − z̃, the remainder term reads as
follows:

Proof The proof can be found in [46]. ◻

L(u, z) = {J(u) − J(uh)} −A(u)(z)

L
� = 0 ⇔

{
L
�

u
(u, z) = J�(u)(�u) −A

�(u)(�u, z)
!
=0

L
�

z
(u, z) = −A(u)(�z)

!
=0

⇔

{
A

�(u)(�u, z) = J�(u)(�u)

A(u)(�z) = 0

(3)A
�(u)(�, z) = J�(u)(�) ∀� ∈ U,

(4)A
�(ũ)(�̃�, z̃) = J�(ũ)(�̃�) ∀�̃� ∈ U.

(5)

J(u) − J(ũ) =
1

2
𝜌(ũ)(z − z̃) +

1

2
𝜌∗(ũ, z̃)(u − ũ) + 𝜌(ũ)(z̃) +R

(3)

𝜌(ũ)(⋅) ∶= −A(ũ)(⋅),

𝜌∗(ũ, z̃)(⋅) ∶= J�(ũ)(⋅) −A
�(ũ)(⋅, z̃).

R
(3) ∶=

1

2 ∫
1

0

[
J���(ũ + se)(e, e, e) −A

���(ũ + se)(e, e, e, z̃ + se∗)

−3A��(ũ + se)(e, e, e∗)
]
s(s − 1) ds.

Remark 2 If ũ ∶= uh ∈ Uh ⊂ U is the Galerkin projection
which solves (2) and z̃ ∶= zh ∈ Vh ⊂ V solving (4), then
the iteration error 𝜌(ũ)(z̃) vanishes and yields the theorems
presented in the early work [3]. Therefore, from now on
we omit the iteration error. The remainder term is usually
of third order [5] and can be omitted for which detailed
computational evidence was demonstrated in [17]. In the
case of a linear problem, it clearly holds that

Remark 3 Theorem 1 motivates the error estimator

This error estimator is exact but not computable. There-
fore, the exact solutions u and z are now being approxi-
mated by higher-order solutions

(
u
(2)

h
, z

(2)

h

)
∈ U

(2)

h
× V

(2)

h
 .

These higher-order solutions can be realised on a refined
grid or by using higher-order basis functions. The practical
error estimator reads

2.3 DWR algorithm

In principle, we need to solve four problems, where
especially the computation of u(2)

h
 is expensive. It is well-

known that different possibilities exist such as global
higher-order finite element solution or local interpola-
tions [5, 7, 48]. Moreover, we only consider the primal
part of the error estimator, which is justified for linear
problems only, and yields a second order remainder term
in nonlinear problems [5] [Proposition 2.3]:

For many nonlinear problems this version is used as it
reduces to solving only two problems and yields for mildly
nonlinear problems, such as incompressible flow in a lam-
inar regime [8], excellent values. On the other hand, for
quasi-linear problems, there is a strong need to work with
the adjoint error parts �∗ as well [16, 17].

In our work, we employ solutions in enriched spaces.
We compute the adjoint solution zl

h
= ihz

l,(2)

h
∈ Vl

h
⊂ V

l,(2)

h

via restriction. For nonlinear problems, we approxi-
mate the primal solution in the enriched space
u
l,(2)

h
= I

(2)

h
ul
h
∈ U

l,(2)

h
⊃ Ul

h
 via interpolation. Therefore, we

only solve two problems in practice: the primal problem
and the enriched adjoint problem.

𝜂 = 𝜌(ũ)(z − z̃) =
1

2
𝜌(ũ)(z − z̃) +

1

2
𝜌∗(ũ, z̃)(u − ũ).

𝜂 =
1

2
𝜌(ũ)(z − z̃) +

1

2
𝜌∗(ũ, z̃)(u − ũ).

(6)𝜂(2) =
1

2
𝜌(ũ)

(
z
(2)

h
− z̃

)
+

1

2
𝜌∗(ũ, z̃)

(
u
(2)

h
− ũ

)
.

𝜂
(2)

h
= 𝜌(uh)

(
z
(2)

h
− z̃

)
.

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

2.4 Error localization

The error estimator �(2) must be localized to correspond-
ing regions of error contribution. This can be either done
by methods proposed in [3–5], which use integration by
parts in a backwards manner and result in an element wise
localization employing the strong form of the equations or
the filtering approach using the weak form [7]. In this work
we use another weak form technique proposed in [48],
where a partition-of-unity (PU)

∑
i �i ≡ 1 was introduced,

in which the error contribution is localized on a nodal level.
To realize this partition-of-unity, one can simply choose
piece-wise bilinear elements Qc

1
 (see e.g., [11]) in a finite

element space Wh = span{�1,… ,�N} with dim(Wh) = N .
Then, the approximated error indicator reads

Some recent theoretical work on the effectivity and effi-
ciency of �(2),PU can be found in [17, 48], respectively.
The main objective of the remainder of this paper is to
compute the adjoint solution with a feedforward neural
network.

2.5 Effectivity index

To evaluate the accuracy of the error estimator we intro-
duce the effectivity index

(7)
𝜂(2),PU =

N∑

i=1

(
1

2
𝜌(ũ)

((
z
(2)

h
− z̃

)
𝜓i

)

+
1

2
𝜌∗(ũ, z̃)

((
u
(2)

h
− ũ

)
𝜓i

))
.

If J(u) is unknown, we approximate it by J(û) , where û is
the solution of the PDE on a very fine grid. We desire that
the effectivity index converges to 1, which signifies that
our error estimator is a good approximation of the error
in the goal functional.

3 Neural networks

In order to realize neural network guided DWR, we con-
sider feedforward neural networks uNN ∶ ℝ

d
→ ℝ , where

d is the dimension of the domain Ω plus the dimension
of u and the dimension of all the derivatives of u that are
required for the adjoint problem. The neural networks can
be expressed as

where T (i) ∶ ℝ
ni−1 → ℝ

ni , y ↦ W (i)y + b(i) are aff ine
transformations for 1 ≤ i ≤ L , with weight matrices
W (i) ∈ ℝ

ni×ni−1 and bias vectors b(i)
∈ ℝ

ni . Here ni denotes
the number of neurons in the i.th layer with n0 = d and
nL = 1 . � ∶ ℝ → ℝ is a nonlinear activation function, which
is the hyperbolic tangent function throughout this work.
Derivatives of neural networks can be computed with back
propagation (see e.g. [26, 49]), a special case of reverse
mode automatic differentiation [38]. Similarly higher order
derivatives can be calculated by applying automatic dif-
ferentiation recursively.

3.1 Universal function approximators

Cybenko [13] and Hornik [27] proved a first version of the
universal approximation theorem, which states that con-
tinuous functions can be approximated to arbitrary preci-
sion by single hidden layer neural networks. A few years
later Pinkus [42] generalized their findings and showed
that single hidden layer neural networks can uniformly
approximate a function and its partial derivatives.

This theoretical result motivates the application of neu-
ral networks for the numerical approximation of partial
differential equations.

3.2 Residual minimization with neural networks

Residual minimization with neural networks has become
popular in the last few years by the works of Raissi, Perdi-
karis and Karniadakis on physics-informed neural networks
(PINNs) [44] and the paper of Sirignano and Spiliopoulos on

Ieff =
||𝜂(2),PU||

|J(u) − J(ũ)|
.

uNN(x) = T (L)
◦�◦T (L−1)

◦⋯◦�◦T (1)(x),

Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9 Research Article

the “Deep Galerkin Method” [52]. For their approach one can
consider the strong formulation of the stationary PDE

where N is a differential operator and B is a boundary
operator. An example for the differential operator N
is given by the semi-linear form A(u)(v) introduced in
Sect. 2.1. The boundary operator B in case of Dirichlet con-
ditions is realized in the weak formulation as usual in the
function space U. One then needs to find a neural network
uNN , which minimizes the loss function

where xΩ
1
,… , xΩ

nΩ
∈ Ω are collocation points inside the

domain and x�Ω
1
,… , x�Ω

n�Ω
∈ �Ω are collocation points on

the boundary. In [56] it has been shown that the two com-
ponents of the loss function need to be weighted appro-
priately to yield accurate results. Therefore, we use a modi-
fied version of this method which circumvents these
issues.

3.3 Our approach

Let us again consider the abstract PDE problem in its strong
formulation (8). For simplicity, we only consider Dirichlet
boundary conditions, i.e. B(u, x) ∶= u(x) − g(x) . Addition-
ally, in our work we use the approach of Berg and Nyström
[6] shown in Fig. 1, who used the ansatz

to fulfill inhomogeneous Dirichlet boundary conditions
exactly. Here g̃ denotes the extension of the boundary
data g to the entire domain Ω̄ , which is continuously

(8)
N(u, x) = 0 inΩ

B(u, x) = 0 on �Ω

L(uNN) =
1

nΩ

nΩ∑

i=1

N
(
uNN , x

Ω
i

)2
+

1

n�Ω

n�Ω∑

i=1

B
(
uNN , x

�Ω
i

)2
,

(9)u(x) ∶= d𝜕Ω(x) ⋅ uNN(x) + g̃(x) for x ∈ Ω̄

differentiable up to the order of the differential operator
N . Berg and Nyström [6] used the distance to the bound-
ary �Ω as their function d�Ω . However, it is sufficient to use
a function d�Ω which is continuously differentiable up to
the order of the differential operator N with the properties

Thus, d�Ω can be interpreted as a level-set function, since

Obviously, for this kind of ansatz for the solution of the
PDE, it holds that

Therefore, in contrast to some previous works, we do not
need to account for the boundary conditions in our loss
function, which is a big benefit of our approach, since
proper weighting of the different residual contributions
in the loss function is not required. It might only be a lit-
tle cumbersome to fulfill the boundary conditions exactly
when dealing with mixed boundary condition, but the
form of the ansatz function for such boundary conditions
has been laid out in [35].

3.3.1 Approximation theorem

In the following, we prove that our neural network solu-
tions approximate the analytical solutions well if their
loss is sufficiently small. Our neural networks uNN have
been trained with the mean squared error of the residual
of the PDE, i.e.

d�Ω(x)

{
= 0 for x ∈ �Ω

≠ 0 for x ∈ Ω
.

Ω = {x ∈ Ω̄ | d𝜕Ω(x) ≠ 0} and 𝜕Ω = {x ∈ Ω̄ | d𝜕Ω(x) = 0}.

B(u, x) = u(x) − g(x) =
[
d𝜕Ω(x) ⋅ uNN(x) + g̃(x)

]

− g(x) = 0 on 𝜕Ω.

Fig. 1 Section 3.3: Diagram of
our ansatz u = d𝜕Ω ⋅ uNN + g̃ for
the two dimensional Poisson
problem. Here we used the
abbreviations ui ∶= u(xi , yi)
and fi ∶= f (xi , yi) for points
x i = (xi , yi) ∈ Ω̄

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

where n is the number of collocation points x i from the
domain Ω . For the sake of generality, let us consider the
generalized loss

for p ≥ 1 . Then, the loss (10) is just the Monte Carlo approx-
imation of the generalized loss for p = 2 . We briefly recall
the approximation theorem from [56] and show that the
classical solution of the Poisson problem satisfies the
assumptions of the approximation theorem.

Lemma 2 (Approximation theorem [56]) Let 2 ≤ p ≤ ∞

. We consider a PDE of the form (8) on a bounded,
open domain Ω ⊂ ℝ

m with Lipschitz boundary �Ω and
N(u, x) = N(u, x) − f̂ (x), where N is a linear, elliptic opera-
tor and f̂ ∈ L2(Ω). Let there be a unique solution û ∈ H1(Ω)
and let the following stability estimate

hold for u ∈ H1(Ω), f ∈ L2(Ω) with N(u, x) = f (x) in Ω. Then
we have for an approximate solution u ∈ H1(Ω) that

Proof Let

Let u = d𝜕Ω ⋅ uNN + g̃ ∈ H1(Ω) be an approximate solution
of the PDE with L̂p(u) < 𝛿 , which means that there exists a
perturbation to the right-hand side ferror ∈ L2(Ω) such that
N(u, x) = f̂ (x) + ferror(x) . By the stability estimate and the
linearity of N, we have

Applying the Hölder inequality to the norm of ferror and
using 2 ≤ p ≤ ∞ yields

Combing the last two inequalities gives us the desired
error bound

(10)L(u) =
1

n

n∑

i=1

N(u, x i)
2,

L̂p(u) =
1

|Ω| ∫Ω

|N(u, x)|p dx

‖u‖H1(Ω) ≤ C‖f‖L2(Ω)

∀𝜖 > 0∃𝛿 > 0 ∶ L̂p(u) < 𝛿 ⟹ ‖u − û‖H1(Ω) < 𝜖.

� = �pC−p|Ω|−
p

2 .

‖u − û‖H1(Ω) ≤ C‖(f̂ + ferror) − f̂‖L2(Ω) = C‖ferror‖L2(Ω).

‖ferror‖L2(Ω) ≤ �Ω�
1

2
−

1

p ‖ferror‖Lp(Ω).

‖u − û‖H1(Ω) ≤ C‖ferror‖L2(Ω) ≤ C�Ω�
1

2
−

1

p ‖ferror‖Lp(Ω)

= C�Ω�
1

2 L̂p(u)
1

p

< C�Ω�
1

2 𝛿
1

p = 𝜖.

In the last inequality, we used that the generalized loss
of our approximate solution is sufficiently small, i.e.
L̂p(u) < 𝛿 . ◻

Let us recapitulate an important result from the
Schauder theory [21], which yields the existence and
uniqueness of classical solutions of the Poisson prob-
lem if we assume higher regularity of our problem, i.e.
when we work with Hölder continuous functions and
sufficiently smooth domains.

Lemma 3 (Solution in classical function spaces) Let
0 < 𝜆 < 1 be such that Ω ⊂ ℝ

m is a domain with C2,� bound-
ary, g̃ ∈ C2,𝜆(Ω̄) and f̂ ∈ C0,𝜆(Ω̄). Then Poisson’s problem,
which is of the form (8) with N(u, x) ∶= −Δu(x), has a unique
solution û ∈ C2,𝜆(Ω̄).

Proof Follows immediately from [21][Theorem 6.14].
 ◻

With Lemma 3 we can now show that the approxima-
tion theorem holds for the Poisson problem in classical
function spaces.

Theorem 4 Let 0 < 𝜆 < 1 be such that Ω ⊂ ℝ
m is a

bounded, open domain with C2,� boundary, g̃ ∈ C2,𝜆(Ω̄) and
f̂ ∈ C0,𝜆(Ω̄). Then Poisson’s problem, which is of the form (8)
with N(u, x) ∶= −Δu(x), has a unique solution û ∈ H1(Ω).
Furthermore, there exists u = d𝜕Ω ⋅ uNN + g̃ ∈ H1(Ω) with the
estimate

Proof From Lemma 3 it follows that there exists a unique
solution û ∈ C2,𝜆(Ω̄) ⊂ H1(Ω) . Analogously it holds that
u = d𝜕Ω ⋅ uNN + g̃ ∈ H1(Ω) . Furthermore, we have by the
Lax-Milgram Lemma that û ∈ H1(Ω) is the unique weak
solution and fulfills the stability estimate

By Lemma 2 the estimate

then also holds. ◻

Remark 4 Theorem 4 implies that a low loss value of a
neural network with high probability corresponds to an
accurate approximation u of the exact solution û of the
PDE, since the loss is a Monte Carlo approximation of the
generalized loss, which for a large number of collocation
points should be close in value.

∀𝜖 > 0∃𝛿 > 0 ∶ L̂p(u) < 𝛿 ⟹ ‖u − û‖H1(Ω) < 𝜖.

‖û‖H1(Ω) ≤ C‖f̂‖L2(Ω).

∀𝜖 > 0∃𝛿 > 0 ∶ L̂p(u) < 𝛿 ⟹ ‖u − û‖H1(Ω) < 𝜖

Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9 Research Article

3.3.2 Neural network solution of the adjoint PDE

To make a posteriori error estimates for our FEM solution
of the primal problem (1), we now use neural networks
to solve the adjoint PDE (3). In an FEM approach, the
adjoint PDE would be solved in its variational form as
described in Algorithm 1, but we minimize the residual
of the strong form using neural networks and hence
need to derive the strong formulation of the adjoint PDE
first. After training, the neural network is then projected
into the FEM ansatz function space of the adjoint prob-
lem. Finally, the a posteriori estimates can be made as
usual with the DWR method following again Algorithm 1.

Remark 5 For linear goal functionals the Riesz representa-
tion theorem yields the existence and uniqueness of the
strong formulation. Nevertheless, deriving the strong form
of the adjoint PDE might be very involved for complicated
PDEs, such as fluid structure interaction, e.g. [47, 57], and
nonlinear goal functionals J ∶ U → ℝ . In future works, we
aim to extend to alternative approaches which do not
require the derivation of the strong form.

4 Algorithmic realization

In this section, we describe our final algorithm for the
neural network guided dual weighted residual method.
In the algorithm, we work with hierarchical FEM spaces,
i.e. Ul

h
⊂ U

l,(2)

h
 and Vl

h
⊂ V

l,(2)

h
 .

Here we only consider the Galerkin method for which
the ansatz function space and the trial function space
coincide, i.e. U = V , but U ≠ V can be realized in a similar
fashion. The novelty compared to the DWR method pre-
sented in Sect. 2 are step 4 and step 5 of the algorithm.
In the following, we describe these parts in more detail.

In step 4, we solve the strong form of the adjoint prob-
lem, which for nonlinear PDEs or nonlinear goal functionals
also depends on the primal solution ul,(2)

h
 . However, when

the PDE and goal functional are both linear, the adjoint
problem does not depend on the primal solution and it is
sufficient to train the neural network only once. Otherwise,
the neural network needs to be trained in each adaptive
iteration. The strong form of the adjoint problem is of the
form (8) and thus we can find a neural network based solu-
tion by minimizing the loss (10) with L-BFGS [32], a quasi-
Newton method. To evaluate the partial derivatives of the
neural network based solution z = d𝜕Ω ⋅ zNN + g̃ inside
the loss function L(⋅) , e.g. the Laplacian of the solution,
we employ automatic differentiation as mentioned at the
beginning of Sect. 3. We observed that by using L-BFGS
sometimes the loss exploded or the optimizer got stuck
at a saddle point. Consequently, we restarted the training
loop with a new neural network when the loss exploded
or used a few steps with the Adam optimizer [29] when a
saddle point was reached. Afterwards, L-BFGS can be used
as an optimizer again. During training we used the coordi-
nates of the degrees of freedom as our collocation points.
We stopped the training when the loss did not decrease
by more than TOL = 10−8 in the last n = 5 epochs or when
we reached the maximum number of epochs, which we
chose to be 400. An alternative stopping criterion on fine
meshes could be early stopping, where the collocation
points are being split into a training and a validation set
and the training stops when the loss on the validation set
starts deviating from the loss on the training set, i.e. when
the neural network begins to overfit on the training data.

In step 5, we projected the neural network based solu-
tion into the enriched FEM space by evaluating it at the
coordinates of the degrees of freedom, which yields a
unique function zl,(2)

h
.

5 Numerical experiments

In this section, we consider three stationary problems
(with in total five numerical tests) with our proposed
approach. We consider both linear and nonlinear PDEs and
goal functionals. The primal problem, i.e. the original PDE,
is being solved with bilinear shape functions. The adjoint
PDE is solved by minimizing the residual of our neural net-
work ansatz (Sects. 3 and 4) and we project the solution
into the biquadratic finite element space. For studying the

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

performance, we also compute the adjoint problem with
finite elements employing biquadratic shape functions.
Finally, this neural network solution is being plugged into
the PU DWR error estimator (7), which decides which ele-
ments will be marked for refinement. To realize the numer-
ical experiments, we couple deal.II [2] with LibTorch, the
PyTorch C++ API [40].

5.1 Poisson’s equation

At first we consider the two dimensional Poisson equa-
tion with homogeneous Dirichlet conditions on the unit
square. In our ansatz (9), we choose the function

Poisson’s problem is given by

with f = −1 . For a linear goal functional J ∶ V → ℝ the
adjoint problem then reads:

Find z ∈ H1
0
(Ω) such that

Here (⋅, ⋅) denotes the L2 inner product, i .e.
(f , g) ∶= ∫

Ω
f ⋅ g dx.

5.1.1 Mean value goal functional

As a first numerical example of a linear goal functional, we
consider the mean value goal functional

The adjoint PDE can be written as

and can be transformed into its strong form

d�Ω(x, y) = x(1 − x)y(1 − y) for x = (x, y) ∈ [0, 1]2.

−Δu = f inΩ ∶= (0, 1)2

u = 0 on �Ω,

(∇� ,∇z) = J(�) ∀� ∈ H1
0
(Ω).

J(u) =
1

|Ω| ∫Ω

u dx .

(∇� ,∇z) =

(
� ,

1

|Ω|

)

We trained a fully connected neural network with two
hidden layers with 32 neurons each and the hyperbolic
tangent activation function for 400 epochs on 1,000 uni-
formly sampled points. In [44] it has been shown that
wider and deeper neural networks can achieve a lower L2
error between the neural network and the analytical solu-
tions. However, if we use the support points of the FEM
mesh as the collocation points, we cannot use bigger neu-
ral networks, since we do not have enough training data.
Therefore, we decided to use smaller networks.

We compared our neural network based error estima-
tor with a standard finite element based error estimator:

In this numerical test the neural network refined in the
same way as the finite element method and both error
indicators yield effectivity indices Ieff of approximately
1.0, which means that the exact error and the estimated
error were almost identical. The error reduction is of sec-
ond order as to be expected and the overall results in
Table 1 confirm well similar computations presented in
[48][Table 1].

5.1.2 Regional mean value goal functional

In the second numerical example, we analyze the mean
value goal functional which is only being computed on a
s u b s e t D ⊂ Ω o f t h e d o m a i n . We c h o o s e
D ∶=

[
0,

1

4

]
×

[
0,

1

4

]
 . For the regional goal function

the strong form of the PDE is given by

where 1D is the indicator function of D. The rest of the train-
ing setup is the same as for the previous goal functional.

−Δz =
1

|Ω|
inΩ

z = 0 on �Ω.

J(u) =
1

|D| ∫D

u dx

−Δz =
1D

|D|
,

Table 1 Section 5.1.1: Error
estimator results for mean
value goal functional

Ref. DoFs J(u) − J(uh) Est. error Ieff

FEM NN FEM NN

0 9 1.17e−2 1.15e−2 1.14e−2 0.979 0.971
1 25 3.17e−3 3.14e−3 3.14e−3 0.992 0.990
2 81 8.10e−4 8.08e−4 8.08e−4 0.998 0.998
3 289 2.03−4 2.04e−4 2.04e−4 1.00 1.00
4 1089 5.03e−5 5.11e−5 5.11e−5 1.02 1.02
5 4225 1.20e−5 1.28e−5 1.28e−5 1.07 1.07

Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9 Research Article

The computational results for this example can be
found in Table 2. Here we can observe that the finite ele-
ment method and our approach end up with different grid
refinements, see Fig. 2, however both methods have a similar
performance and effectivity indices Ieff of approximately 1.0.

On the grids in Fig. 2, which have been refined with the
different approaches, we can see that the finite element
method creates a symmetrical grid refinement. This sym-
metry can not be observed in the neural network based
refinement. Furthermore, our approach refined a few more
elements than FEM, but overall our methodology still pro-
duced a reasonable grid adaptivity.

5.1.3 Mean squared value goal functional

In this third numerical test, an example of a nonlinear goal
functional is the mean squared value, which reads

For a nonlinear goal functional the adjoint problem then
needs to be modified to (see also (3) in Section 2): Find
z ∈ H1

0
(Ω) such that

J(u) =
1

|Ω| ∫Ω

u2 dx .

Computing the Fréchet derivative of the mean squared
value goal functional, we can rewrite the adjoint problem
as

and can be transformed into its strong form

Our training setup also changed slightly. The problem
statement has become more difficult and we decided
to use slightly bigger networks to compute a sufficiently
good solution of the adjoint solution. We used three hid-
den layers with 32 neurons and retrained the neural net-
work on each grid, since the primal solution is part of the
adjoint PDE.

In Table 3 it can be seen that our neural network
approach consistently underestimates the error and pro-
duces slightly worse results than the FEM solution. Nev-
ertheless, the effectivity index is still sufficiently close to
1 and the grid refinement, see Fig. 3, looks reasonable.

(∇� ,∇z) = J�(u)(�) ∀� ∈ H1
0
(Ω).

(∇� ,∇z) =

(
� ,

2u

|Ω|

)

−Δz =
2u

|Ω|
.

Table 2 Section 5.1.2: Error
estimator results for regional
mean value goal functional

Ref. FEM NN

DoFs J(u) − J(uh) Est. error Ieff DoFs J(u) − J(uh) Est. error Ieff

0 25 3.60e−3 3.57e−3 0.991 25 3.60e−3 3.43e−3 0.953
1 41 1.05e−3 1.15e−3 1.10 41 1.05e−3 1.07e−3 1.02
2 137 2.57e−4 2.72e−4 1.06 137 2.57e−4 2.53e−4 0.986
3 377 6.07e−5 6.30e−5 1.04 349 6.08e−5 5.93e−5 0.976
4 1153 1.67e−5 1.86e−5 1.11 1139 1.68e−5 1.76e−5 1.05
5 3705 4.18e−6 4.90e−6 1.17 3635 4.40e−6 4.92e−6 1.12

Fig. 2 Section 5.1.2: Grid
refinement with regional mean
value goal functional

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

Moreover as in the other previous tests, the effecitivity
indices Ieff are stable without major oscillations.

5.2 Poisson’s problem with analytical primal
and adjoint solutions

To be better able to assess our methodology, we now con-
sider a Poisson problem with analytical primal and adjoint
solutions.

5.2.1 Problem statement

For this we choose the source function of the primal Pois-
son problem to be

and we choose the goal functional J(u) = ∫
Ω
f ⋅ u dx . For

this problem the strong form of the adjoint PDE is given by

Then it holds that the primal and adjoint solution read

f (x, y) = 2�2 sin(�x) sin(�y) for x = (x, y) ∈ (0, 1)2,

−Δz = f .

u(x, y) = z(x, y) = sin(�x) sin(�y) for x = (x, y) ∈ [0, 1]2.

5.2.2 Setups for performance analysis

In the following, we analyze the performance of our pro-
posed approach, while varying the number of hidden lay-
ers and the number of neurons therein. Like in the previ-
ous numerical experiments, we consider fully connected
neural networks with hyperbolic tangent activation func-
tion. For the hyper parameters of the neural networks, i.e.
the number of hidden layers and the number of neurons,
we applied a grid search to {1, 2, 4, 6, 8} hidden layers and
{10, 20, 40} neurons.

For a fair comparison with the FEM guided adjoint com-
putations, we chose to reuse the neural network and con-
tinue its training in each refinement cycle. However, since
the PDE and the goal functional are linear, it would have
been sufficient to train the neural network based adjoint
solution once prior to the entire FEM simulations.

Furthermore, we investigated whether our method
can lead to computational improvements over the finite
element method on fine meshes, where the number of
degrees of freedom is large and FEM simulations are com-
putationally expensive. To reduce the computational effort
when dealing with neural networks and a large number
of degrees of freedom, we are reusing the neural network
from the last refinement cycle. We expect the weights and

Table 3 Section 5.1.3: Error
estimator results for mean
squared value goal functional

Ref. FEM NN

DoFs J(u) − J(uh) Est. error Ieff DoFs J(u) − J(uh) Est. error Ieff

0 9 7.26e−4 5.63e−4 0.776 9 7.26e−4 1.89e−4 0.261
1 25 1.87e−4 1.75e−4 0.936 25 1.87e−4 1.34e−4 0.713
2 81 4.71e−5 4.64e−5 0.987 81 4.71e−5 3.39e−5 0.721
3 289 1.16e−5 1.18e−5 1.01 289 1.16e−5 8.53e−6 0.732
4 1041 2.89e−6 3.16e−6 1.09 745 4.57e−6 3.06e−6 0.669
5 3561 6.86e−7 9.38e−7 1.37 2865 9.95e−7 7.51e−7 0.755

Fig. 3 Section 5.1.3: Grid
refinement with mean squared
value goal functional

Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9 Research Article

biases from the last refinement cycle to be a good initial
value for the weights and biases in the current refinement
cycle. Additionally, instead of working with a large num-
ber of collocation points, on fine meshes we randomly
sample 10,000 collocation points from the coordinates
of the degrees of freedom. On the one hand, we chose
this restriction since we are using L-BFGS to optimize the
parameters of our neural network. This quasi-Newton
scheme has a higher order of convergence than Adam or
other gradient descent based schemes, but in its original
formulation does not allow batch-wise optimization. Due
to these memory limitations of the L-BFGS method, we
decided to limit the number of collocation points. On the
other hand, our neural network based ansatz is a mesh-
less method, which might not require all coordinates of
the degrees of freedom as collocation points to achieve a
sufficient accuracy.

5.2.3 Discussion of our findings

To access the performance of our approach for different
hyper parameters of the neural networks, we summarize
the effectivity indices in Table 4. Here we start at refine-
ment cycle 0 with 25 degrees of freedom and through
adaptive mesh refinement end up with close to 500,000
degrees of freedom at refinement cycle 8. Taking a closer
look at the effectivity indices of our simulations, we
observe that the effectivity indices of the neural network
mostly coincide with the effectivity indices from the finite
element method computations independently of the
number of hidden layers and the number of neurons. This
indicates that our approach yields accurate solutions for
all neural network hyper parameters from our experiment.

To investigate whether our method can lead to speed
ups over the finite element method on fine meshes, we

inspect the CPU times of the finite element method and
the neural network based approach. The FEM based DWR
method with 474,153 degrees of freedom in the 8th refine-
ment cycle had a mean CPU time of 169.2 s and a standard
deviation of 0.5 s in 10 independent runs. In Table 5 the
CPU times for our approach with neural networks with dif-
ferent hyper parameters are being reported. We observe
that the computational time increases with more hid-
den layers. Moreover, one hidden layer neural networks
were on average twice as fast as the FEM simulations.
Finally, neural networks with up to four hidden layers
had on average a shorter CPU time than the FEM based
approach. Note that the neural networks with 8 hidden
layers with 10 neurons have a large mean and standard
deviation due to a statistical outlier. Here in one of the
runs the CPU time amounted to more than 3,000 seconds
because of repeated failure to converge during the train-
ing procedure.

In Fig. 4, we display the training times of the neural
networks in each refinement cycle. The solid lines and the
shaded regions, which are bounded by dashed lines, repre-
sent the mean and one standard deviation of the training

Table 4 Section 5.2: Mean of the effectivity indices of 10 independ-
ent runs for the Poisson problem with analytical primal and adjoint
solution. The standard deviation for the neural network based sim-
ulations is 0.00 for the all but the last refinement cycle, where we

have a standard deviation of 0.01. The neural networks are being
denoted by tuples where the first number corresponds to the num-
ber of hidden layers and the second number represents the num-
ber of neurons therein

Ref. FEM NN

(1,10) (1,20) (1,40) (2,10) (2,20) (2,40) (4,10) (4,20) (4,40) (6,10) (6,20) (6,40) (8,10) (8,20) (8,40)

0 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990
1 0.997 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
4 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11
5 1.10 1.11 1.11 1.11 1.10 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.10 1.11 1.11
6 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
7 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
8 1.08 1.07 1.06 1.06 1.07 1.06 1.07 1.07 1.07 1.06 1.07 1.07 1.06 1.06 1.07 1.07

Table 5 Section 5.2: CPU times (in seconds) for 10 independent
runs of the proposed neural network approach applied to the Pois-
son problem with analytical primal and adjoint solution. We com-
pare various number of hidden layers and the number of neurons
therein

Neurons Layers

1 2 4 6 8

10 79.0 ± 11 99.0 ± 9 135.9 ± 23 221.5 ± 183665.8 ± 876

20 79.4 ± 7 100.0 ± 9 139.5 ± 38 175.8 ± 44 258.4 ± 97

40 74.2 ± 4 113.5 ± 14 162.0 ± 32 204.2 ± 56 271.8 ± 74

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

times. We observe that for all neural network hyper param-
eters the 0th refinement cycle is the most CPU time inten-
sive and the remaining refinement cycles have a one order
of magnitude shorter neural network training time. Moreo-
ver, deeper neural networks, i.e. models with more hidden
layers, in general require a higher training time than shal-
low neural networks, i.e. models with fewer hidden layers,
due to a higher number of weights and biases which need
to be optimized. Note that the peak of the training time
of 8 hidden layer neural networks at 3 refinement cycles
has been caused by the aforementioned statistical outlier,
which restarted training more than 100 times in the 3rd

refinement cycle due to an explosion in the loss value or
due to being stuck in a local minimum.

In Fig. 5, the number of epochs for training the neu-
ral networks are shown for each refinement cycle. In
each epoch the weights and biases of the neural net-
work are trained on the full set of collocation points
with the L-BFGS optimizer. Like before, the solid lines
and the shaded regions, which are bounded by dashed
lines, represent the mean and one standard deviation of
the number of epochs. Analogous to our observations
of the CPU times, the number of epochs after the 0th
refinement cycle decreases by an order of magnitude.

Fig. 4 Section 5.2: Neuronal network training times (in seconds) per refinement cycle for 10 independent runs for the Poisson problem with
analytical primal and adjoint solution

Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9 Research Article

In the 0th refinement cycle more hidden layers lead to
a higher number of training epochs. Deeper neural net-
works have a more complex loss surface and thus are
more prone to an explosion of the loss or a stagnation
of the loss at an suboptimal value. This is being reflected
in the higher number of epochs in the 0th refinement
cycle. Nevertheless, in the remaining refinement cycles
the number of epochs does not seem to depend on the
depth of the neural networks.

5.3 Nonlinear PDE and nonlinear goal functional

In the second numerical problem, we now consider the
case were both the PDE and the goal functional are non-
linear. We add the scaled nonlinear term u2 to the previ-
ous equation, such that the new problem is given by

Fig. 5 Section 5.2: Number of epochs per refinement cycle to train neural network for 10 independent runs for the Poisson problem with
analytical primal and adjoint solution

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

with 𝛾 > 0 and f = −1 . For our nonlinear goal functional,
we choose the mean squared value goal functional from
the previous example. The adjoint problem thus reads:

Find z ∈ H1
0
(Ω) such that

with corresponding strong form

The training setup is the same as for the mean squared
value goal functional example. For � = 50 we obtain the
results shown in Table 6.

Our neural network approach produces different
results, see Fig. 6, than the finite element method, but at
the efficiency indices and the refined grids we observe
that our approach still works well for adaptive mesh
refinement.

−Δu + �u2 = f inΩ

u = 0 on �Ω,

(∇� ,∇z) + 2�(� , zu) =

(
� ,

2u

|Ω|

)
∀� ∈ H1

0
(Ω),

−Δz + 2�zu =
2u

|Ω|
.

6 Conclusions and outlook

In this work, we proposed neural network guided a pos-
teriori error estimation with the dual weighted residual
method. Specifically, we computed the adjoint solution
with feedforward neural networks with two or three hid-
den layers. To use existing FEM software we first solved
the adjoint PDE with neural networks and then projected
the solution into the FEM space of the adjoint PDE. We
demonstrated experimentally that neural network based
solutions of the strong formulation of the adjoint PDE
yield excellent approximations for dual weighted residual
error estimates. Therefore, neural networks might be an
alternative way to compute adjoint sensitivities within
goal-oriented error estimators for certain problems, when
the number of degrees of freedom is high. Furthermore
they admit greater flexibility being a meshless method
and it would be interesting to investigate in future works
how different choices of collocation points influence the
quality of the error estimates. In the current work, we
observed an advantage in computing times (in terms of
CPU time) when using more than 400,000 degrees of free-
dom. Additionally, we could establish the same accuracies
and robustness as for pure FEM problems. However, an

Table 6 Section 5.3: Error
estimator results for the
nonlinear PDE

Ref. FEM NN

DoFs J(u) − J(uh) Est. error Ieff DoFs J(u) − J(uh) Est. error Ieff

0 9 1.21e−3 8.64e−4 0.713 9 1.21e−3 0.821e−4 0.677
1 25 3.58e−4 3.32e−4 0.926 25 3.58e−4 4.88e−4 1.36
2 81 9.40e−5 9.29e−5 0.988 81 9.40e−5 4.24e−5 0.451
3 289 2.33e−5 2.39e−5 1.03 241 3.01e−5 2.68e−5 0.890
4 945 6.03e−6 7.17e−6 1.19 809 7.67e−6 4.97e−6 0.648
5 3089 1.25e−6 2.15e−6 1.72 2947 1.52e−6 1.58e−6 1.04

Fig. 6 Section 5.3: Grid refine-
ment for the nonlinear PDE

Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9 Research Article

important current limitation of our methodology is that
we work with the strong formulation of the PDE, whose
derivation from the weak formulation can be very involved
for more complex problems, e.g. multiphysics. Hence, if an
energy minimization formulation exists, this should be a
viable alternative to our strong form of the adjoint PDE.
This alternative problem can be solved with neural net-
works with the “Deep Ritz Method” [14, 50]. Nevertheless,
the energy minimization formulation does not exist for all
partial differential equations. For this reason in the future,
we are going to analyze neural network based methods,
which work with the variational formulation, e.g. VPINNs
[28].

Acknowledgements This work is supported by the Deutsche
Forschungsgemeinschaft (DFG) under Germany’s Excellence Strat-
egy within the cluster of Excellence PhoenixD (EXC 2122, Project ID
390833453). Moreover, we thank the anonymous reviewers for sev-
eral suggestions that helped to improve the paper.

Funding Open Access funding enabled and organized by Projekt
DEAL. The Funding was provided by Deutsche Forschungsgemein-
schaft (Grant Number 390833453).

Data availability The authors agree on open-source data and pro-
gramming codes as the underlying finite element library deal.II [2]
is itself open-source. However, the programming code of the current
paper is under development and not yet well documented. Parts of
the data and code can be obtained from the corresponding author
upon request. The finite element implementations for both the linear
and nonlinear test cases can be re-implemented using the template
[59] with the code on github https:// github. com/ tomme swick/ goal-
orien ted- fsi and replacing the equations, parameters, geometry, and
boundary conditions by the respective data in this paper.

Declarations

Conflict of interest On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest. The authors have no
relevant financial or non-financial interests to disclose. The authors
have no conflicts of interest to declare that are relevant to the con-
tent of this article. All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or materials
discussed in this manuscript. The authors have no financial or pro-
prietary interests in any material discussed in this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Ainsworth M, Oden JT (2000) A posteriori error estimation in
finite element analysis. pure and applied mathematics (New
York). Wiley-Interscience [John Wiley & Sons], New York. URL
https:// www. wiley. com/ en- us/ expor tProd uct/ pdf/ 97804 71294
115

 2. Arndt D, Bangerth W, Blais B, Clevenger TC, Fehling M, Grayver
AV, Heister T, Heltai L, Kronbichler M, Maier M, Munch P, Pelteret
J-P, Rastak R, Thomas I, Turcksin B, Wang Z, Wells D (2020) The
deal.II library, version 9.2. J Numer Math 28(3):131–146.
https:// doi. org/ 10. 1515/ jnma- 2020- 0043

 3. Bangerth W, Rannacher R (2003) Adaptive Finite Element Meth-
ods for Differential Equations. Birkhäuser Verlag. URL https://
link. sprin ger. com/ book/ 10. 1007/ 978-3- 0348- 7605-6

 4. Becker R, Rannacher R (1996) A feed-back approach to error
control in finite element methods: basic analysis and examples.
East-West J Numer Math 4:237–264

 5. Becker R, Rannacher R (2001) An optimal control approach to
a posteriori error estimation in finite element methods. Acta
Numerica 10:1–102. https:// doi. org/ 10. 1017/ S0962 49290 10000
10

 6. Berg J, Nyström K (2018) A unified deep artificial neural network
approach to partial differential equations in complex geome-
tries. Neurocomputing, 317:28–41. ISSN 0925-2312. https:// doi.
org/ 10. 1016/j. neucom. 2018. 06. 056

 7. Braack M, Ern A (2003) A posteriori control of modeling errors
and discretization errors. Multiscale Modeling Simul 1(2):221–
238. https:// doi. org/ 10. 1137/ S1540 34590 24104 82

 8. Braack M, Richter T (2006) Solutions of 3D Navier–Stokes bench-
mark problems with adaptive finite elements. Comput Fluids
35(4):372–392. ISSN 0045-7930. https:// doi. org/ 10. 1016/j. compf
luid. 2005. 02. 001. URL http:// www. scien cedir ect. com/ scien ce/
artic le/ pii/ S0045 79300 50003 81

 9. Brevis I, Muga I, van der Zee KG (2020) A machine-learning
minimal-residual (ML-MRes) framework for goal-oriented finite
element discretizations. Comput Math Appl ISSN 0898-1221.
https:// doi. org/ 10. 1016/j. camwa. 2020. 08. 012. URL https:// www.
scien cedir ect. com/ scien ce/ artic le/ pii/ S0898 12212 03031 99

 10. Chen F, Sondak D, Protopapas P, Mattheakis M, Liu S, Agarwal
D, Giovanni MD (2020) NeuroDiffEq: a Python package for solv-
ing differential equations with neural networks. J Open Source
Softw. https:// doi. org/ 10. 21105/ joss. 01931

 11. Ciarlet P (2002) The finite element method for elliptic prob-
lems. Classics in Applied Mathematics. Soc Ind Appl Math. ISBN
9780898715149. URL https:// books. google. de/ books? id= isEEy
UXW9q kC

 12. Cilliers PI, Botha MM (2020) Goal-Oriented Error Estimation for
the Method of Moments to Compute Antenna Impedance. IEEE
Antennas Wireless Propag Lett 19(6):997–1001. https:// doi. org/
10. 1109/ LAWP. 2020. 29861 69

 13. Cybenko G (1989) Approximation by superpositions of a sig-
moidal function. Math Control Signals Syst 2(4):303–314. ISSN
1435-568X. https:// doi. org/ 10. 1007/ BF025 51274

 14. WE, Yu B (Mar 2018) The Deep Ritz Method: a deep learning-
based numerical algorithm for solving variational problems.
Commun Math Stat 6(1):1–12. ISSN 2194-671X. https:// doi. org/
10. 1007/ s40304- 018- 0127-z

 15. Endtmayer B (2021) Multi-goal oriented a posteriori error esti-
mates for nonlinear partial differential equations. PhD thesis,
Johannes Kepler University Linz. URL https:// epub. jku. at/ obvul
ihs/ conte nt/ title info/ 57674 44

 16. Endtmayer B, Langer U, Wick T (2019) Multigoal-oriented error
estimates for non-linear problems. J Numer Math 27(4):215–236.
https:// doi. org/ 10. 1515/ jnma- 2018- 0038

https://github.com/tommeswick/goal-oriented-fsi
https://github.com/tommeswick/goal-oriented-fsi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.wiley.com/en-us/exportProduct/pdf/9780471294115
https://www.wiley.com/en-us/exportProduct/pdf/9780471294115
https://doi.org/10.1515/jnma-2020-0043
https://link.springer.com/book/10.1007/978-3-0348-7605-6
https://link.springer.com/book/10.1007/978-3-0348-7605-6
https://doi.org/10.1017/S0962492901000010
https://doi.org/10.1017/S0962492901000010
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1137/S1540345902410482
https://doi.org/10.1016/j.compfluid.2005.02.001
https://doi.org/10.1016/j.compfluid.2005.02.001
http://www.sciencedirect.com/science/article/pii/S0045793005000381
http://www.sciencedirect.com/science/article/pii/S0045793005000381
https://doi.org/10.1016/j.camwa.2020.08.012
https://www.sciencedirect.com/science/article/pii/S0898122120303199
https://www.sciencedirect.com/science/article/pii/S0898122120303199
https://doi.org/10.21105/joss.01931
https://books.google.de/books?id=isEEyUXW9qkC
https://books.google.de/books?id=isEEyUXW9qkC
https://doi.org/10.1109/LAWP.2020.2986169
https://doi.org/10.1109/LAWP.2020.2986169
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1007/s40304-018-0127-z
https://epub.jku.at/obvulihs/content/titleinfo/5767444
https://epub.jku.at/obvulihs/content/titleinfo/5767444
https://doi.org/10.1515/jnma-2018-0038

Vol:.(1234567890)

Research Article SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9

 17. Endtmayer B, Langer U, Wick T (2020) Two-side a posteriori error
estimates for the dual-weighted residual method. SIAM J Sci
Comput 42(1):A371–A394. https:// doi. org/ 10. 1137/ 18M12 27275

 18. Endtmayer B, Langer U, Wick T (2021) Reliability and efficiency
of dwr-type a posteriori error estimates with smart sensitivity
weight recovering. Comput Methods Appl Math. https:// doi.
org/ 10. 1515/ cmam- 2020- 0036

 19. Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction
to adaptive methods for differential equations. In: Iserles A (ed)
Acta Numerica. Cambridge University Press, Cambridge, pp
105–158. https:// doi. org/ 10. 1017/ S0962 49290 00025 31

 20. Failer L, Wick T (2018) Adaptive time-step control for nonlinear
fluid-structure interaction. J Comput Phys 366:448–477. ISSN
0021-9991. https:// doi. org/ 10. 1016/j. jcp. 2018. 04. 021. URL
https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0021 99911
83023 77

 21. Gilbarg D, Trudinger NS (2001) Elliptic partial differential
equations of second order, classics in mathematics, vol 224.
Springer, Berlin, Heidelberg

 22. Giles M, Süli E (2002) Adjoint methods for pdes: a posteriori
error analysis and postprocessing by duality. Acta Numerica
2002:145–236. https:// doi. org/ 10. 1017/ S0962 49290 20000 3X
(A. Iserles, ed)

 23. Grätsch T, Bathe K-J (2006) Goal-oriented error estimation in
the analysis of fluid flows with structural interactions. Comput
Methods Appl Mech Eng 195:5673–5684. https:// doi. org/ 10.
1016/j. cma. 2005. 10. 020

 24. Hartmann D, Lessig C, Margenberg N, Richter T (2020) A neu-
ral network multigrid solver for the Navier–Stokes equations,
arXiv: 2008. 11520. URL https:// arxiv. org/ pdf/ 2008. 11520. pdf

 25. Hennigh O, Narasimhan S, Nabian MA, Subramaniam A, Tang-
sali K, Rietmann M, del Aguila Ferrandis J, Byeon W, Fang Z,
Choudhry S (2020) NVIDIA SimNet

TM : an AI-accelerated multi-
physics simulation framework, arXiv: 2012. 07938. URL https://
arxiv. org/ abs/ 2012. 07938

 26. Higham C, Higham D (2019) Deep learning: an introduction
for applied mathematicians. SIAM Rev 61(4):860–891. https://
doi. org/ 10. 1137/ 18M11 65748

 27. Hornik K (1991) Approximation capabilities of multilayer feed-
forward networks. Neural Netw 4(2):251–257. ISSN 0893-6080.
https:// doi. org/ 10. 1016/ 0893- 6080(91) 90009-T. URL http://
www. scien cedir ect. com/ scien ce/ artic le/ pii/ 08936 08091
90009T

 28. Kharazmi E, Zhang Z, Karniadakis GE (2019) Variational phys-
ics-informed neural networks for solving partial differential
equations, arXiv: 1912. 00873

 29. Kingma DP, Ba J (2017) Adam: A Method for Stochastic Opti-
mization, arXiv: 1412. 6980

 30. Knoke T, Wick T (2021) Solving differential equations via arti-
ficial neural networks: Findings and failures in a model prob-
lem. Examples Counterexamples, 1:100035. ISSN 2666-657X.
https:// doi. org/ 10. 1016/j. exco. 2021. 100035. URL https:// www.
scien cedir ect. com/ scien ce/ artic le/ pii/ S2666 657X2 10001 97

 31. Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K,
Stuart A, Anandkumar A (2020) Fourier neural operator for
parametric partial differential equations, arXiv: 2010. 08895

 32. Liu DC, Nocedal J (Aug 1989) On the limited memory BFGS
method for large scale optimization. Math Program 45(1):503–
528. ISSN 1436-4646. https:// doi. org/ 10. 1007/ BF015 89116

 33. Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (Mar 2021a)
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nat Mach
Intell 3(3):218–229. ISSN 2522-5839. https:// doi. org/ 10. 1038/
s42256- 021- 00302-5

 34. Lu L, Meng X, Mao Z, Karniadakis GE (2021) DeepXDE: a deep
learning library for solving differential equations. SIAM Rev
63(1):208–228. https:// doi. org/ 10. 1137/ 19M12 74067

 35. Lyu L, Wu K, Du R, Chen J (2020) Enforcing exact boundary and
initial conditions in the deep mixed residual method, arXiv:
2008. 01491

 36. Maier M, Rannacher R (2018) A duality-based optimization
approach for model adaptivity in heterogeneous multiscale
problems. Multiscale Modeling Simul 16(1):412–428. https://
doi. org/ 10. 1137/ 16M11 05670

 37. Mattis SA, Wohlmuth B (2018) Goal-oriented adaptive surro-
gate construction for stochastic inversion. Comput Methods
Appl Mech Eng 339:36–60. ISSN 0045-7825. https:// doi. org/ 10.
1016/j. cma. 2018. 04. 045. URL http:// www. scien cedir ect. com/
scien ce/ artic le/ pii/ S0045 78251 83023 05

 38. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn.
Springer, New York, NY, USA

 39. Oden JT (2018) Adaptive multiscale predictive modelling. Acta
Numerica 27:353–450. https:// doi. org/ 10. 1017/ S0962 49291
80000 3X

 40. ...Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Kil-
leen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang
E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang
L, Bai J, Chintala S (2019) Pytorch: An imperative style, high-
performance deep learning library. In: Wallach H, Larochelle H,
Beygelzimer A, d’Alché Buc F, Fox E, Garnett R (eds) Advances in
neural information processing systems, vol 32. Curran Associ-
ates Inc, New York

 41. Peraire J, Patera A (1998) Bounds for linear-functional outputs of
coercive partial differential equations: local indicators and adap-
tive refinement. In: Ladeveze P, Oden J (eds) Advances in Adap-
tive Computational Methods in Mechanics. Elsevier, Amsterdam,
pp 199–215. https:// doi. org/ 10. 1016/ S0922- 5382(98) 80011-1

 42. Pinkus A (1999) Approximation theory of the MLP model in neu-
ral networks. Acta Numerica 8:143–195. https:// doi. org/ 10. 1017/
S0962 49290 00029 19

 43. Rademacher A (2019) Mesh and model adaptivity for frictional
contact problems. Numerische Mathematik 142:465–523.
https:// doi. org/ 10. 1007/ s00211- 019- 01044-8

 44. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations. J Comput Phys 378:686–707. https:// doi. org/ 10.
1016/j. jcp. 2018. 10. 045

 45. Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechan-
ics: Learning velocity and pressure fields from flow visualiza-
tions. Science. ISSN 0036-8075. https:// doi. org/ 10. 1126/ scien
ce. aaw47 41. URL https:// scien ce. scien cemag. org/ conte nt/ early/
2020/ 01/ 29/ scien ce. aaw47 41

 46. Rannacher R, Vihharev J (2013) Adaptive finite element analy-
sis of nonlinear problems: balancing of discretization and itera-
tion errors. J Numer Math 21(1):23–62. https:// doi. org/ 10. 1515/
jnum- 2013- 0002

 47. Richter T (2012) Goal-oriented error estimation for fluid-struc-
ture interaction problems. Comput Methods Appl Mech Eng
223–224:28–42. https:// doi. org/ 10. 1016/j. cma. 2012. 02. 014

 48. Richter T, Wick T (2015) Variational localizations of the dual
weighted residual estimator. J Comput Appl Math 279:192–208.
https:// doi. org/ 10. 1016/j. cam. 2014. 11. 008

 49. Rumelhart D, Hinton G, Williams R (1986) Learning representa-
tions by back-propagating errors. Nature 323:533–536. https://
doi. org/ 10. 1038/ 32353 3a0

 50. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh V, Guo H,
Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to
the solution of partial differential equations in computational

https://doi.org/10.1137/18M1227275
https://doi.org/10.1515/cmam-2020-0036
https://doi.org/10.1515/cmam-2020-0036
https://doi.org/10.1017/S0962492900002531
https://doi.org/10.1016/j.jcp.2018.04.021
https://www.sciencedirect.com/science/article/pii/S0021999118302377
https://www.sciencedirect.com/science/article/pii/S0021999118302377
https://doi.org/10.1017/S096249290200003X
https://doi.org/10.1016/j.cma.2005.10.020
https://doi.org/10.1016/j.cma.2005.10.020
http://arxiv.org/abs/2008.11520
https://arxiv.org/pdf/2008.11520.pdf
http://arxiv.org/abs/2012.07938
https://arxiv.org/abs/2012.07938
https://arxiv.org/abs/2012.07938
https://doi.org/10.1137/18M1165748
https://doi.org/10.1137/18M1165748
https://doi.org/10.1016/0893-6080(91)90009-T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://arxiv.org/abs/1912.00873
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.exco.2021.100035
https://www.sciencedirect.com/science/article/pii/S2666657X21000197
https://www.sciencedirect.com/science/article/pii/S2666657X21000197
http://arxiv.org/abs/2010.08895
https://doi.org/10.1007/BF01589116
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1137/19M1274067
http://arxiv.org/abs/2008.01491
http://arxiv.org/abs/2008.01491
https://doi.org/10.1137/16M1105670
https://doi.org/10.1137/16M1105670
https://doi.org/10.1016/j.cma.2018.04.045
https://doi.org/10.1016/j.cma.2018.04.045
http://www.sciencedirect.com/science/article/pii/S0045782518302305
http://www.sciencedirect.com/science/article/pii/S0045782518302305
https://doi.org/10.1017/S096249291800003X
https://doi.org/10.1017/S096249291800003X
https://doi.org/10.1016/S0922-5382(98)80011-1
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1007/s00211-019-01044-8
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
https://science.sciencemag.org/content/early/2020/01/29/science.aaw4741
https://science.sciencemag.org/content/early/2020/01/29/science.aaw4741
https://doi.org/10.1515/jnum-2013-0002
https://doi.org/10.1515/jnum-2013-0002
https://doi.org/10.1016/j.cma.2012.02.014
https://doi.org/10.1016/j.cam.2014.11.008
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0

Vol.:(0123456789)

SN Applied Sciences (2022) 4:62 | https://doi.org/10.1007/s42452-022-04938-9 Research Article

mechanics via machine learning: Concepts, implementation and
applications. Comput Methods Appl Mech Eng 362:112790. ISSN
0045-7825. https:// doi. org/ 10. 1016/j. cma. 2019. 112790. URL
https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0045 78251
93068 26

 51. Schmich M, Vexler B (2008) Adaptivity with dynamic meshes
for space-time finite element discretizations of parabolic equa-
tions. SIAM J Sci Comput 30(1):369–393. https:// doi. org/ 10.
1137/ 06067 0468

 52. Sirignano J, Spiliopoulos K (2018) DGM: A deep learning algo-
rithm for solving partial differential equations. J Comput Phys,
375:1339–1364. ISSN 0021-9991. https:// doi. org/ 10. 1016/j. jcp.
2018. 08. 029. URL https:// www. scien cedir ect. com/ scien ce/ artic
le/ pii/ S0021 99911 83055 27

 53. Stolfo PD, Rademacher A, Schröder A (2019) Dual weighted
residual error estimation for the finite cell method. J Numer
Math 27(2):101–122. https:// doi. org/ 10. 1515/ jnma- 2017- 0103

 54. Suttmeier F (2008) Numerical solution of Variational Inequalities
by Adaptive Finite Elements. Vieweg+Teubner. URL https:// link.
sprin ger. com/ book/ 10. 1007/ 978-3- 8348- 9546-2

 55. van Brummelen E, Zhuk S, van Zwieten G (2017) Worst-case
multi-objective error estimation and adaptivity. Comput Meth-
ods Appl Mech Eng 313:723–743. ISSN 0045-7825. https:// doi.
org/ 10. 1016/j. cma. 2016. 10. 007. URL http:// www. scien cedir ect.
com/ scien ce/ artic le/ pii/ S0045 78251 63018 15

 56. van der Meer R, Oosterlee C, Borovykh A (2020) Optimally
weighted loss functions for solving PDEs with Neural Networks,
arXiv: 2002. 06269

 57. van der Zee K, van Brummelen E, Akkerman I, de Borst R (2011)
Goal-oriented error estimation and adaptivity for fluid-structure
interaction using exact linearized adjoints. Comput Methods
Appl Mech Eng 200(37):2738–2757. ISSN 0045-7825. https:// doi.
org/ 10. 1016/j. cma. 2010. 12. 010. URL https:// www. scien cedir ect.
com/ scien ce/ artic le/ pii/ S0045 78251 00035 55. Special Issue on
Modeling Error Estimation and Adaptive Modeling

 58. Wessels H, Weißenfels C, Wriggers P (2020) The neural particle
method—an updated Lagrangian physics informed neural
network for computational fluid dynamics. Comput Methods
Appl Mech Eng 368:113127. ISSN 0045-7825. https:// doi. org/ 10.
1016/j. cma. 2020. 113127. URL https:// www. scien cedir ect. com/
scien ce/ artic le/ pii/ S0045 78252 03031 21

 59. Wick T (2021) Adjoint-based methods for optimization and goal-
oriented error control applied to fluid-structure interaction:
implementation of a partition-of-unity dual-weighted residual
estimator for stationary forward FSI problems in deal.II. In: Book
of Extended Abstracts of the 6th ECCOMAS Young Investigators
Conference 7th-9th (July 2021) Valencia. Spain. ECCOMAS 2021.
https:// doi. org/ 10. 4995/ YIC20 21. 2021. 12332

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.cma.2019.112790
https://www.sciencedirect.com/science/article/pii/S0045782519306826
https://www.sciencedirect.com/science/article/pii/S0045782519306826
https://doi.org/10.1137/060670468
https://doi.org/10.1137/060670468
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://doi.org/10.1515/jnma-2017-0103
https://link.springer.com/book/10.1007/978-3-8348-9546-2
https://link.springer.com/book/10.1007/978-3-8348-9546-2
https://doi.org/10.1016/j.cma.2016.10.007
https://doi.org/10.1016/j.cma.2016.10.007
http://www.sciencedirect.com/science/article/pii/S0045782516301815
http://www.sciencedirect.com/science/article/pii/S0045782516301815
http://arxiv.org/abs/2002.06269
https://doi.org/10.1016/j.cma.2010.12.010
https://doi.org/10.1016/j.cma.2010.12.010
https://www.sciencedirect.com/science/article/pii/S0045782510003555
https://www.sciencedirect.com/science/article/pii/S0045782510003555
https://doi.org/10.1016/j.cma.2020.113127
https://doi.org/10.1016/j.cma.2020.113127
https://www.sciencedirect.com/science/article/pii/S0045782520303121
https://www.sciencedirect.com/science/article/pii/S0045782520303121
https://doi.org/10.4995/YIC2021.2021.12332

	Neural network guided adjoint computations in dual weighted residual error estimation
	Abstract
	Article Highlights
	1 Introduction
	2 Dual weighted residual method
	2.1 Abstract problem
	2.2 Motivation for adaptivity
	2.3 DWR algorithm
	2.4 Error localization
	2.5 Effectivity index

	3 Neural networks
	3.1 Universal function approximators
	3.2 Residual minimization with neural networks
	3.3 Our approach
	3.3.1 Approximation theorem
	3.3.2 Neural network solution of the adjoint PDE

	4 Algorithmic realization
	5 Numerical experiments
	5.1 Poisson’s equation
	5.1.1 Mean value goal functional
	5.1.2 Regional mean value goal functional
	5.1.3 Mean squared value goal functional

	5.2 Poisson’s problem with analytical primal and adjoint solutions
	5.2.1 Problem statement
	5.2.2 Setups for performance analysis
	5.2.3 Discussion of our findings

	5.3 Nonlinear PDE and nonlinear goal functional

	6 Conclusions and outlook
	Acknowledgements
	References

