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Abstract 
In this work, we are concerned with neural network guided goal-oriented a posteriori error estimation and adaptivity 
using the dual weighted residual method. The primal problem is solved using classical Galerkin finite elements. The 
adjoint problem is solved in strong form with a feedforward neural network using two or three hidden layers. The main 
objective of our approach is to explore alternatives for solving the adjoint problem with greater potential of a numerical 
cost reduction. The proposed algorithm is based on the general goal-oriented error estimation theorem including both 
linear and nonlinear stationary partial differential equations and goal functionals. Our developments are substantiated 
with some numerical experiments that include comparisons of neural network computed adjoints and classical finite 
element solutions of the adjoints. In the programming software, the open-source library deal.II is successfully coupled 
with LibTorch, the PyTorch C++ application programming interface.

Article Highlights 

• Adjoint approximation with feedforward neural net-
work in dual-weighted residual error estimation.

• Side-by-side comparisons for accuracy and computa-
tional cost with classical finite element computations.

• Numerical experiments for linear and nonlinear prob-
lems yielding excellent effectivity indices.

Keywords Dual weighted residuals · A posteriori error estimation · Adjoint · Neural network · Deal.II · LibTorch

1 Introduction

This work is devoted to an innovative solution of the 
adjoint equation in goal-oriented error estimation with 
the dual weighted residual (DWR) method [3–5] (based 
on former adjoint concepts [19]); we also refer to [1, 7, 22, 
41] for some important early work. Since then, the DWR 
method has been applied to numerous applications such 
as variational inequalities [54], space-time adaptivity for 
parabolic problems [51], fluid-structure interaction [20, 23, 

47, 57], Maxwell’s equations [12], worst-case multi-objec-
tive adaptivity [55], the finite cell method [53], surrogate 
models in stochastic inversion [37], model adaptivity in 
multiscale problems [36], mesh and model adaptivity for 
frictional contact [43], and adaptive multiscale predictive 
modeling [39]. A summary of theoretical advancements 
in efficiency estimates and multi-goal-oriented error esti-
mation was recently made in [15]. An important part in 
these studies is the adjoint problem, as it measures the 
sensitivity of the primal solution with respect to a single or 
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multiple given goal functionals (quantities of interest). This 
adjoint solution is usually obtained by global higher order 
finite element method (FEM) solutions or local higher 
order approximations [5]. In general, the former is more 
stable, see e.g. [18], but the latter works often sufficiently 
well in practice. As the adjoint solution is only required to 
evaluate the a posteriori error estimator, a cheap solution 
is of interest.

Consequently, in this work, the main objective is to 
explore alternatives for computing the adjoint. Due to 
the universal approximation property [42], a primer can-
didate are neural networks as they are already success-
fully employed for solving ordinary and partial differential 
equations (PDE) [6, 10, 24, 25, 30, 31, 33, 34, 44, 45, 50, 
52, 58]. A related work in aiming to improve goal-oriented 
computations with the help of neural network data-driven 
finite elements is [9]. Moreover, a recent summary of the 
key concepts of neural networks and deep learning was 
compiled in [26]. The advantage of neural networks is a 
greater flexibility as they belong to the class of meshless 
methods. We follow the methodology of [44, 52] to solve 
PDEs by minimizing the residual using an L-BFGS (Limited 
memory Broyden-Fletcher-Goldfarb-Shanno) method [32]. 
We address both linear and nonlinear PDEs and goal func-
tionals in stationary settings. However, a shortcoming in 
the current approach is that we need to work with strong 
adjoint formulations, which may limit extensions to non-
linear coupled PDEs such as multiphysics problems and 
coupled variational inequality systems. If such problems 
can be restated in an energy formulation, again neural 
network algorithms are known [14, 50]. Despite this draw-
back, namely the necessity of working with strong formu-
lations, the current study provides useful insights whether 
at all neural network guided adjoints can be an alternative 
concept for dual weighted residual error estimation. For 
this reason, our resulting modified adaptive algorithm and 
related numerical simulations are compared side by side in 
all numerical tests to classical Galerkin finite element solu-
tions (see e.g., [11]) of the adjoint. Our proposed algorithm 
is implemented in the open-source finite element library 
deal.II [2] coupled with LibTorch, the PyTorch C++ API [40].

The outline of this paper is as follows: In Sect. 2, we 
recapitulate the DWR method. Next, in Sect. 3 we gather 
the important ingredients of the neural network solution. 
This section also includes an extension of an approxima-
tion theorem from Lebesgue spaces to classical function 
spaces. The algorithmic realization is addressed in Sect. 4. 
Then, in Sect. 5 several numerical experiments are con-
ducted. Our findings are summarized in Sect. 6.

2  Dual weighted residual method

2.1  Abstract problem

Let U and V be Banach spaces and let A ∶ U → V∗ be a 
nonlinear mapping, where V∗ denotes the dual space of V. 
With this, we can define the problem: Find u ∈ U such that

Additionally, we can look at an approximation of this prob-
lem. For subspaces Ũ ⊂ U and Ṽ ⊂ V  the problem reads: 
Find ũ ∈ Ũ such that

Remark 1 In the following the nonlinear mapping A(⋅)(⋅) 
will represent the variational formulation of a stationary 
partial differential equation with the associated function 
spaces U and V. We define the finite element approxima-
tion of the abstract problem as follows: Find uh ∈ Uh such 
that

where Uh ⊂ U and Vh ⊂ V  denote the finite element spaces. 
Here the operator is given by A(uh)(⋅) ∶= a(uh)(⋅) − l(⋅) 
with the linear forms a(uh)(⋅) and l(⋅).

2.2  Motivation for adaptivity

In many applications we are not necessarily interested in the 
whole solution to a given problem but more explicitly only in 
the evaluation of a certain quantity of interest. This quantity 
of interest can often be represented mathematically by a 
goal functional J ∶ U → ℝ . Here the main target is to mini-
mize the approximation error between u and uh measured 
in the given goal functional J(⋅) and use the computational 
resources efficiently. This can lead to the approach of [4, 5], 
the DWR method, which this work will follow closely. We 
also refer to [1, 3] and the prior survey paper using duality 
arguments for adaptivity in differential equations [19]. We 
are interested in the evaluation of the goal functional J in 
the solution u ∈ U to the problem A(u)(v) = 0 for all v ∈ V  
and its corresponding discrete problem uh ∈ Uh to the prob-
lem A(uh)(vh) = 0 for all vh ∈ Vh . Under the assumption that 
both problems yield unique solutions, the problem state-
ment of minimizing the approximation error with respect to 
a given PDE from above can be rewritten into the equivalent 
optimization problem:

(1)A(u)(v) = 0 ∀v ∈ V .

A(ũ)(ṽ) = 0 ∀ṽ ∈ Ṽ .

(2)A(uh)(vh) = 0 ∀vh ∈ Vh,

min
u∈U

{J(u) − J(uh)} s.t. A(u)(v) = 0 ∀v ∈ V .
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For this constrained optimization problem we can intro-
duce the corresponding Lagrangian

with the adjoint variable z ∈ V  acting as a Lagrange mul-
tiplier. For this, a stationary point needs to fulfill the first-
order necessary conditions

where J′,A′ denote the Fréchet derivatives. We see that a 
defining equation for the adjoint variable arises therein. 
Find z ∈ V  such that

which is known as the adjoint problem. In other words, 
the adjoint solution measures the variation of the primal 
solution u with respect to the goal functional J(⋅) . Simi-
larly to Sect. 2.1, we apply an approximation (for instance a 
finite element discretization) and obtain as discrete adjoint 
problem: Find z̃ ∈ V  such that

These preparations yield to the a posteriori error repre-
sentation for the approximation distance between u and 
ũ measured in terms of the goal functional J(⋅) , as derived 
in [46].

Theorem 1 Let (u, z) ∈ U × V  solve (1) and (3). Further, let 
A ∈ C

3(U, V∗) and J ∈ C
3(U,ℝ). Then for arbitrary approxi-

mations (ũ, z̃) ∈ U × V  the error representation

holds true and

With e = u − ũ, e∗ = z − z̃, the remainder term reads as 
follows:

Proof The proof can be found in [46].   ◻

L(u, z) = {J(u) − J(uh)} −A(u)(z)

L
� = 0 ⇔

{
L
�

u
(u, z) = J�(u)(�u) −A

�(u)(�u, z)
!
=0

L
�

z
(u, z) = −A(u)(�z)

!
=0

⇔

{
A

�(u)(�u, z) = J�(u)(�u)

A(u)(�z) = 0

(3)A
�(u)(�, z) = J�(u)(�) ∀� ∈ U,

(4)A
�(ũ)(�̃�, z̃) = J�(ũ)(�̃�) ∀�̃� ∈ U.

(5)

J(u) − J(ũ) =
1

2
𝜌(ũ)(z − z̃) +

1

2
𝜌∗(ũ, z̃)(u − ũ) + 𝜌(ũ)(z̃) +R

(3)

𝜌(ũ)(⋅) ∶= −A(ũ)(⋅),

𝜌∗(ũ, z̃)(⋅) ∶= J�(ũ)(⋅) −A
�(ũ)(⋅, z̃).

R
(3) ∶=

1

2 ∫
1

0

[
J���(ũ + se)(e, e, e) −A

���(ũ + se)(e, e, e, z̃ + se∗)

−3A��(ũ + se)(e, e, e∗)
]
s(s − 1) ds.

Remark 2 If ũ ∶= uh ∈ Uh ⊂ U is the Galerkin projection 
which solves (2) and z̃ ∶= zh ∈ Vh ⊂ V  solving (4), then 
the iteration error 𝜌(ũ)(z̃) vanishes and yields the theorems 
presented in the early work [3]. Therefore, from now on 
we omit the iteration error. The remainder term is usually 
of third order [5] and can be omitted for which detailed 
computational evidence was demonstrated in [17]. In the 
case of a linear problem, it clearly holds that

Remark 3 Theorem 1 motivates the error estimator

This error estimator is exact but not computable. There-
fore, the exact solutions u and z are now being approxi-
mated by higher-order solutions 

(
u
(2)

h
, z

(2)

h

)
∈ U

(2)

h
× V

(2)

h
 . 

These higher-order solutions can be realised on a refined 
grid or by using higher-order basis functions. The practical 
error estimator reads

2.3  DWR algorithm

In principle, we need to solve four problems, where 
especially the computation of u(2)

h
 is expensive. It is well-

known that different possibilities exist such as global 
higher-order finite element solution or local interpola-
tions [5, 7, 48]. Moreover, we only consider the primal 
part of the error estimator, which is justified for linear 
problems only, and yields a second order remainder term 
in nonlinear problems [5] [Proposition 2.3]:

For many nonlinear problems this version is used as it 
reduces to solving only two problems and yields for mildly 
nonlinear problems, such as incompressible flow in a lam-
inar regime [8], excellent values. On the other hand, for 
quasi-linear problems, there is a strong need to work with 
the adjoint error parts �∗ as well [16, 17].

In our work, we employ solutions in enriched spaces. 
We compute the adjoint solution zl

h
= ihz

l,(2)

h
∈ Vl

h
⊂ V

l,(2)

h
 

via restriction. For nonlinear problems, we approxi-
mate the primal solution in the enriched space 
u
l,(2)

h
= I

(2)

h
ul
h
∈ U

l,(2)

h
⊃ Ul

h
 via interpolation. Therefore, we 

only solve two problems in practice: the primal problem 
and the enriched adjoint problem. 

𝜂 = 𝜌(ũ)(z − z̃) =
1

2
𝜌(ũ)(z − z̃) +

1

2
𝜌∗(ũ, z̃)(u − ũ).

𝜂 =
1

2
𝜌(ũ)(z − z̃) +

1

2
𝜌∗(ũ, z̃)(u − ũ).

(6)𝜂(2) =
1

2
𝜌(ũ)

(
z
(2)

h
− z̃

)
+

1

2
𝜌∗(ũ, z̃)

(
u
(2)

h
− ũ

)
.

𝜂
(2)

h
= 𝜌(uh)

(
z
(2)

h
− z̃

)
.
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2.4  Error localization

The error estimator �(2) must be localized to correspond-
ing regions of error contribution. This can be either done 
by methods proposed in [3–5], which use integration by 
parts in a backwards manner and result in an element wise 
localization employing the strong form of the equations or 
the filtering approach using the weak form [7]. In this work 
we use another weak form technique proposed in [48], 
where a partition-of-unity (PU) 

∑
i �i ≡ 1 was introduced, 

in which the error contribution is localized on a nodal level. 
To realize this partition-of-unity, one can simply choose 
piece-wise bilinear elements Qc

1
 (see e.g., [11]) in a finite 

element space Wh = span{�1,… ,�N} with dim(Wh) = N . 
Then, the approximated error indicator reads

Some recent theoretical work on the effectivity and effi-
ciency of �(2),PU can be found in [17, 48], respectively. 
The main objective of the remainder of this paper is to 
compute the adjoint solution with a feedforward neural 
network.

2.5  Effectivity index

To evaluate the accuracy of the error estimator we intro-
duce the effectivity index

(7)
𝜂(2),PU =

N∑

i=1

(
1

2
𝜌(ũ)

((
z
(2)

h
− z̃

)
𝜓i

)

+
1

2
𝜌∗(ũ, z̃)

((
u
(2)

h
− ũ

)
𝜓i

))
.

If J(u) is unknown, we approximate it by J(û) , where û is 
the solution of the PDE on a very fine grid. We desire that 
the effectivity index converges to 1, which signifies that 
our error estimator is a good approximation of the error 
in the goal functional.

3  Neural networks

In order to realize neural network guided DWR, we con-
sider feedforward neural networks uNN ∶ ℝ

d
→ ℝ , where 

d is the dimension of the domain Ω plus the dimension 
of u and the dimension of all the derivatives of u that are 
required for the adjoint problem. The neural networks can 
be expressed as

where T (i) ∶ ℝ
ni−1 → ℝ

ni , y ↦ W (i)y + b(i) are aff ine 
transformations for 1 ≤ i ≤ L , with weight matrices 
W (i) ∈ ℝ

ni×ni−1 and bias vectors b(i)
∈ ℝ

ni . Here ni denotes 
the number of neurons in the i.th layer with n0 = d and 
nL = 1 . � ∶ ℝ → ℝ is a nonlinear activation function, which 
is the hyperbolic tangent function throughout this work. 
Derivatives of neural networks can be computed with back 
propagation (see e.g. [26, 49]), a special case of reverse 
mode automatic differentiation [38]. Similarly higher order 
derivatives can be calculated by applying automatic dif-
ferentiation recursively.

3.1  Universal function approximators

Cybenko [13] and Hornik [27] proved a first version of the 
universal approximation theorem, which states that con-
tinuous functions can be approximated to arbitrary preci-
sion by single hidden layer neural networks. A few years 
later Pinkus [42] generalized their findings and showed 
that single hidden layer neural networks can uniformly 
approximate a function and its partial derivatives.

This theoretical result motivates the application of neu-
ral networks for the numerical approximation of partial 
differential equations.

3.2  Residual minimization with neural networks

Residual minimization with neural networks has become 
popular in the last few years by the works of Raissi, Perdi-
karis and Karniadakis on physics-informed neural networks 
(PINNs) [44] and the paper of Sirignano and Spiliopoulos on 

Ieff =
||𝜂(2),PU||

|J(u) − J(ũ)|
.

uNN(x) = T (L)
◦�◦T (L−1)

◦⋯◦�◦T (1)(x),
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the “Deep Galerkin Method” [52]. For their approach one can 
consider the strong formulation of the stationary PDE

where N  is a differential operator and B is a boundary 
operator. An example for the differential operator N  
is given by the semi-linear form A(u)(v) introduced in 
Sect. 2.1. The boundary operator B in case of Dirichlet con-
ditions is realized in the weak formulation as usual in the 
function space U. One then needs to find a neural network 
uNN , which minimizes the loss function

where xΩ
1
,… , xΩ

nΩ
∈ Ω are collocation points inside the 

domain and x�Ω
1
,… , x�Ω

n�Ω
∈ �Ω are collocation points on 

the boundary. In [56] it has been shown that the two com-
ponents of the loss function need to be weighted appro-
priately to yield accurate results. Therefore, we use a modi-
fied version of this method which circumvents these 
issues.

3.3  Our approach

Let us again consider the abstract PDE problem in its strong 
formulation (8). For simplicity, we only consider Dirichlet 
boundary conditions, i.e. B(u, x) ∶= u(x) − g(x) . Addition-
ally, in our work we use the approach of Berg and Nyström 
[6] shown in Fig. 1, who used the ansatz

to fulfill inhomogeneous Dirichlet boundary conditions 
exactly. Here g̃ denotes the extension of the boundary 
data g to the entire domain Ω̄ , which is continuously 

(8)
N(u, x) = 0 inΩ

B(u, x) = 0 on �Ω

L(uNN) =
1

nΩ

nΩ∑

i=1

N
(
uNN , x

Ω
i

)2
+

1

n�Ω

n�Ω∑

i=1

B
(
uNN , x

�Ω
i

)2
,

(9)u(x) ∶= d𝜕Ω(x) ⋅ uNN(x) + g̃(x) for x ∈ Ω̄

differentiable up to the order of the differential operator 
N  . Berg and Nyström [6] used the distance to the bound-
ary �Ω as their function d�Ω . However, it is sufficient to use 
a function d�Ω which is continuously differentiable up to 
the order of the differential operator N  with the properties

Thus, d�Ω can be interpreted as a level-set function, since

Obviously, for this kind of ansatz for the solution of the 
PDE, it holds that

Therefore, in contrast to some previous works, we do not 
need to account for the boundary conditions in our loss 
function, which is a big benefit of our approach, since 
proper weighting of the different residual contributions 
in the loss function is not required. It might only be a lit-
tle cumbersome to fulfill the boundary conditions exactly 
when dealing with mixed boundary condition, but the 
form of the ansatz function for such boundary conditions 
has been laid out in [35].

3.3.1  Approximation theorem

In the following, we prove that our neural network solu-
tions approximate the analytical solutions well if their 
loss is sufficiently small. Our neural networks uNN have 
been trained with the mean squared error of the residual 
of the PDE, i.e.

d�Ω(x)

{
= 0 for x ∈ �Ω

≠ 0 for x ∈ Ω
.

Ω = {x ∈ Ω̄ | d𝜕Ω(x) ≠ 0} and 𝜕Ω = {x ∈ Ω̄ | d𝜕Ω(x) = 0}.

B(u, x) = u(x) − g(x) =
[
d𝜕Ω(x) ⋅ uNN(x) + g̃(x)

]

− g(x) = 0 on 𝜕Ω.

Fig. 1  Section 3.3: Diagram of 
our ansatz u = d𝜕Ω ⋅ uNN + g̃ for 
the two dimensional Poisson 
problem. Here we used the 
abbreviations ui ∶= u(xi , yi) 
and fi ∶= f (xi , yi) for points 
x i = (xi , yi) ∈ Ω̄
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where n is the number of collocation points x i from the 
domain Ω . For the sake of generality, let us consider the 
generalized loss

for p ≥ 1 . Then, the loss (10) is just the Monte Carlo approx-
imation of the generalized loss for p = 2 . We briefly recall 
the approximation theorem from [56] and show that the 
classical solution of the Poisson problem satisfies the 
assumptions of the approximation theorem.

Lemma 2 (Approximation theorem [56]) Let 2 ≤ p ≤ ∞

. We consider a PDE of the form (8) on a bounded, 
open domain Ω ⊂ ℝ

m with Lipschitz boundary �Ω and 
N(u, x) = N(u, x) − f̂ (x), where N is a linear, elliptic opera-
tor and f̂ ∈ L2(Ω). Let there be a unique solution û ∈ H1(Ω) 
and let the following stability estimate

hold for u ∈ H1(Ω), f ∈ L2(Ω) with N(u, x) = f (x) in Ω. Then 
we have for an approximate solution u ∈ H1(Ω) that

Proof Let

Let u = d𝜕Ω ⋅ uNN + g̃ ∈ H1(Ω) be an approximate solution 
of the PDE with L̂p(u) < 𝛿 , which means that there exists a 
perturbation to the right-hand side ferror ∈ L2(Ω) such that 
N(u, x) = f̂ (x) + ferror(x) . By the stability estimate and the 
linearity of N, we have

Applying the Hölder inequality to the norm of ferror and 
using 2 ≤ p ≤ ∞ yields

Combing the last two inequalities gives us the desired 
error bound

(10)L(u) =
1

n

n∑

i=1

N(u, x i)
2,

L̂p(u) =
1

|Ω| ∫Ω

|N(u, x)|p dx

‖u‖H1(Ω) ≤ C‖f‖L2(Ω)

∀𝜖 > 0∃𝛿 > 0 ∶ L̂p(u) < 𝛿 ⟹ ‖u − û‖H1(Ω) < 𝜖.

� = �pC−p|Ω|−
p

2 .

‖u − û‖H1(Ω) ≤ C‖(f̂ + ferror) − f̂‖L2(Ω) = C‖ferror‖L2(Ω).

‖ferror‖L2(Ω) ≤ �Ω�
1

2
−

1

p ‖ferror‖Lp(Ω).

‖u − û‖H1(Ω) ≤ C‖ferror‖L2(Ω) ≤ C�Ω�
1

2
−

1

p ‖ferror‖Lp(Ω)

= C�Ω�
1

2 L̂p(u)
1

p

< C�Ω�
1

2 𝛿
1

p = 𝜖.

In the last inequality, we used that the generalized loss 
of our approximate solution is sufficiently small, i.e. 
L̂p(u) < 𝛿 .   ◻

Let us recapitulate an important result from the 
Schauder theory [21], which yields the existence and 
uniqueness of classical solutions of the Poisson prob-
lem if we assume higher regularity of our problem, i.e. 
when we work with Hölder continuous functions and 
sufficiently smooth domains.

Lemma 3 (Solution in classical function spaces) Let 
0 < 𝜆 < 1 be such that Ω ⊂ ℝ

m is a domain with C2,� bound-
ary, g̃ ∈ C2,𝜆(Ω̄) and f̂ ∈ C0,𝜆(Ω̄). Then Poisson’s problem, 
which is of the form (8) with N(u, x) ∶= −Δu(x), has a unique 
solution û ∈ C2,𝜆(Ω̄).

Proof Follows immediately from [21][Theorem 6.14].  
 ◻

With Lemma 3 we can now show that the approxima-
tion theorem holds for the Poisson problem in classical 
function spaces.

Theorem  4  Let 0 < 𝜆 < 1 be such that Ω ⊂ ℝ
m is a 

bounded, open domain with C2,� boundary, g̃ ∈ C2,𝜆(Ω̄) and 
f̂ ∈ C0,𝜆(Ω̄). Then Poisson’s problem, which is of the form (8) 
with N(u, x) ∶= −Δu(x), has a unique solution û ∈ H1(Ω). 
Furthermore, there exists u = d𝜕Ω ⋅ uNN + g̃ ∈ H1(Ω) with the 
estimate

Proof From Lemma 3 it follows that there exists a unique 
solution û ∈ C2,𝜆(Ω̄) ⊂ H1(Ω) . Analogously it holds that 
u = d𝜕Ω ⋅ uNN + g̃ ∈ H1(Ω) . Furthermore, we have by the 
Lax-Milgram Lemma that û ∈ H1(Ω) is the unique weak 
solution and fulfills the stability estimate

By Lemma 2 the estimate

then also holds.   ◻

Remark 4 Theorem 4 implies that a low loss value of a 
neural network with high probability corresponds to an 
accurate approximation u of the exact solution û of the 
PDE, since the loss is a Monte Carlo approximation of the 
generalized loss, which for a large number of collocation 
points should be close in value.

∀𝜖 > 0∃𝛿 > 0 ∶ L̂p(u) < 𝛿 ⟹ ‖u − û‖H1(Ω) < 𝜖.

‖û‖H1(Ω) ≤ C‖f̂‖L2(Ω).

∀𝜖 > 0∃𝛿 > 0 ∶ L̂p(u) < 𝛿 ⟹ ‖u − û‖H1(Ω) < 𝜖
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3.3.2  Neural network solution of the adjoint PDE

To make a posteriori error estimates for our FEM solution 
of the primal problem (1), we now use neural networks 
to solve the adjoint PDE (3). In an FEM approach, the 
adjoint PDE would be solved in its variational form as 
described in Algorithm 1, but we minimize the residual 
of the strong form using neural networks and hence 
need to derive the strong formulation of the adjoint PDE 
first. After training, the neural network is then projected 
into the FEM ansatz function space of the adjoint prob-
lem. Finally, the a posteriori estimates can be made as 
usual with the DWR method following again Algorithm 1.

Remark 5 For linear goal functionals the Riesz representa-
tion theorem yields the existence and uniqueness of the 
strong formulation. Nevertheless, deriving the strong form 
of the adjoint PDE might be very involved for complicated 
PDEs, such as fluid structure interaction, e.g. [47, 57], and 
nonlinear goal functionals J ∶ U → ℝ . In future works, we 
aim to extend to alternative approaches which do not 
require the derivation of the strong form.

4  Algorithmic realization

In this section, we describe our final algorithm for the 
neural network guided dual weighted residual method. 
In the algorithm, we work with hierarchical FEM spaces, 
i.e. Ul

h
⊂ U

l,(2)

h
 and Vl

h
⊂ V

l,(2)

h
 . 

Here we only consider the Galerkin method for which 
the ansatz function space and the trial function space 
coincide, i.e. U = V  , but U ≠ V  can be realized in a similar 
fashion. The novelty compared to the DWR method pre-
sented in Sect. 2 are step 4 and step 5 of the algorithm. 
In the following, we describe these parts in more detail.

In step 4, we solve the strong form of the adjoint prob-
lem, which for nonlinear PDEs or nonlinear goal functionals 
also depends on the primal solution ul,(2)

h
 . However, when 

the PDE and goal functional are both linear, the adjoint 
problem does not depend on the primal solution and it is 
sufficient to train the neural network only once. Otherwise, 
the neural network needs to be trained in each adaptive 
iteration. The strong form of the adjoint problem is of the 
form (8) and thus we can find a neural network based solu-
tion by minimizing the loss (10) with L-BFGS [32], a quasi-
Newton method. To evaluate the partial derivatives of the 
neural network based solution z = d𝜕Ω ⋅ zNN + g̃ inside 
the loss function L(⋅) , e.g. the Laplacian of the solution, 
we employ automatic differentiation as mentioned at the 
beginning of Sect. 3. We observed that by using L-BFGS 
sometimes the loss exploded or the optimizer got stuck 
at a saddle point. Consequently, we restarted the training 
loop with a new neural network when the loss exploded 
or used a few steps with the Adam optimizer [29] when a 
saddle point was reached. Afterwards, L-BFGS can be used 
as an optimizer again. During training we used the coordi-
nates of the degrees of freedom as our collocation points. 
We stopped the training when the loss did not decrease 
by more than TOL = 10−8 in the last n = 5 epochs or when 
we reached the maximum number of epochs, which we 
chose to be 400. An alternative stopping criterion on fine 
meshes could be early stopping, where the collocation 
points are being split into a training and a validation set 
and the training stops when the loss on the validation set 
starts deviating from the loss on the training set, i.e. when 
the neural network begins to overfit on the training data.

In step 5, we projected the neural network based solu-
tion into the enriched FEM space by evaluating it at the 
coordinates of the degrees of freedom, which yields a 
unique function zl,(2)

h
.

5  Numerical experiments

In this section, we consider three stationary problems 
(with in total five numerical tests) with our proposed 
approach. We consider both linear and nonlinear PDEs and 
goal functionals. The primal problem, i.e. the original PDE, 
is being solved with bilinear shape functions. The adjoint 
PDE is solved by minimizing the residual of our neural net-
work ansatz (Sects. 3 and 4) and we project the solution 
into the biquadratic finite element space. For studying the 
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performance, we also compute the adjoint problem with 
finite elements employing biquadratic shape functions. 
Finally, this neural network solution is being plugged into 
the PU DWR error estimator (7), which decides which ele-
ments will be marked for refinement. To realize the numer-
ical experiments, we couple deal.II [2] with LibTorch, the 
PyTorch C++ API [40].

5.1  Poisson’s equation

At first we consider the two dimensional Poisson equa-
tion with homogeneous Dirichlet conditions on the unit 
square. In our ansatz (9), we choose the function

Poisson’s problem is given by

with f = −1 . For a linear goal functional J ∶ V → ℝ the 
adjoint problem then reads:

Find z ∈ H1
0
(Ω) such that

Here (⋅, ⋅) denotes the L2 inner product,  i .e. 
(f , g) ∶= ∫

Ω
f ⋅ g dx.

5.1.1  Mean value goal functional

As a first numerical example of a linear goal functional, we 
consider the mean value goal functional

The adjoint PDE can be written as

and can be transformed into its strong form

d�Ω(x, y) = x(1 − x)y(1 − y) for x = (x, y) ∈ [0, 1]2.

−Δu = f inΩ ∶= (0, 1)2

u = 0 on �Ω,

(∇� ,∇z) = J(�) ∀� ∈ H1
0
(Ω).

J(u) =
1

|Ω| ∫Ω

u dx .

(∇� ,∇z) =

(
� ,

1

|Ω|

)

We trained a fully connected neural network with two 
hidden layers with 32 neurons each and the hyperbolic 
tangent activation function for 400 epochs on 1,000 uni-
formly sampled points. In [44] it has been shown that 
wider and deeper neural networks can achieve a lower L2 
error between the neural network and the analytical solu-
tions. However, if we use the support points of the FEM 
mesh as the collocation points, we cannot use bigger neu-
ral networks, since we do not have enough training data. 
Therefore, we decided to use smaller networks.

We compared our neural network based error estima-
tor with a standard finite element based error estimator:

In this numerical test the neural network refined in the 
same way as the finite element method and both error 
indicators yield effectivity indices Ieff  of approximately 
1.0, which means that the exact error and the estimated 
error were almost identical. The error reduction is of sec-
ond order as to be expected and the overall results in 
Table 1 confirm well similar computations presented in 
[48][Table 1].

5.1.2  Regional mean value goal functional

In the second numerical example, we analyze the mean 
value goal functional which is only being computed on a 
s u b s e t  D ⊂ Ω  o f  t h e  d o m a i n .  We  c h o o s e 
D ∶=

[
0,

1

4

]
×

[
0,

1

4

]
 . For the regional goal function

the strong form of the PDE is given by

where 1D is the indicator function of D. The rest of the train-
ing setup is the same as for the previous goal functional.

−Δz =
1

|Ω|
inΩ

z = 0 on �Ω.

J(u) =
1

|D| ∫D

u dx

−Δz =
1D

|D|
,

Table 1  Section 5.1.1: Error 
estimator results for mean 
value goal functional

Ref. DoFs J(u) − J(uh) Est. error Ieff

FEM NN FEM NN

0 9 1.17e−2 1.15e−2 1.14e−2 0.979 0.971
1 25 3.17e−3 3.14e−3 3.14e−3 0.992 0.990
2 81 8.10e−4 8.08e−4 8.08e−4 0.998 0.998
3 289 2.03−4 2.04e−4 2.04e−4 1.00 1.00
4 1089 5.03e−5 5.11e−5 5.11e−5 1.02 1.02
5 4225 1.20e−5 1.28e−5 1.28e−5 1.07 1.07
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The computational results for this example can be 
found in Table 2. Here we can observe that the finite ele-
ment method and our approach end up with different grid 
refinements, see Fig. 2, however both methods have a similar 
performance and effectivity indices Ieff  of approximately 1.0.

On the grids in Fig. 2, which have been refined with the 
different approaches, we can see that the finite element 
method creates a symmetrical grid refinement. This sym-
metry can not be observed in the neural network based 
refinement. Furthermore, our approach refined a few more 
elements than FEM, but overall our methodology still pro-
duced a reasonable grid adaptivity.

5.1.3  Mean squared value goal functional

In this third numerical test, an example of a nonlinear goal 
functional is the mean squared value, which reads

For a nonlinear goal functional the adjoint problem then 
needs to be modified to (see also (3) in Section 2): Find 
z ∈ H1

0
(Ω) such that

J(u) =
1

|Ω| ∫Ω

u2 dx .

Computing the Fréchet derivative of the mean squared 
value goal functional, we can rewrite the adjoint problem 
as

and can be transformed into its strong form

Our training setup also changed slightly. The problem 
statement has become more difficult and we decided 
to use slightly bigger networks to compute a sufficiently 
good solution of the adjoint solution. We used three hid-
den layers with 32 neurons and retrained the neural net-
work on each grid, since the primal solution is part of the 
adjoint PDE.

In Table  3 it can be seen that our neural network 
approach consistently underestimates the error and pro-
duces slightly worse results than the FEM solution. Nev-
ertheless, the effectivity index is still sufficiently close to 
1 and the grid refinement, see Fig. 3, looks reasonable. 

(∇� ,∇z) = J�(u)(�) ∀� ∈ H1
0
(Ω).

(∇� ,∇z) =

(
� ,

2u

|Ω|

)

−Δz =
2u

|Ω|
.

Table 2  Section 5.1.2: Error 
estimator results for regional 
mean value goal functional

Ref. FEM NN

DoFs J(u) − J(uh) Est. error Ieff DoFs J(u) − J(uh) Est. error Ieff

0 25 3.60e−3 3.57e−3 0.991 25 3.60e−3 3.43e−3 0.953
1 41 1.05e−3 1.15e−3 1.10 41 1.05e−3 1.07e−3 1.02
2 137 2.57e−4 2.72e−4 1.06 137 2.57e−4 2.53e−4 0.986
3 377 6.07e−5 6.30e−5 1.04 349 6.08e−5 5.93e−5 0.976
4 1153 1.67e−5 1.86e−5 1.11 1139 1.68e−5 1.76e−5 1.05
5 3705 4.18e−6 4.90e−6 1.17 3635 4.40e−6 4.92e−6 1.12

Fig. 2  Section 5.1.2: Grid 
refinement with regional mean 
value goal functional
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Moreover as in the other previous tests, the effecitivity 
indices Ieff  are stable without major oscillations.

5.2  Poisson’s problem with analytical primal 
and adjoint solutions

To be better able to assess our methodology, we now con-
sider a Poisson problem with analytical primal and adjoint 
solutions.

5.2.1  Problem statement

For this we choose the source function of the primal Pois-
son problem to be

and we choose the goal functional J(u) = ∫
Ω
f ⋅ u dx . For 

this problem the strong form of the adjoint PDE is given by

Then it holds that the primal and adjoint solution read

f (x, y) = 2�2 sin(�x) sin(�y) for x = (x, y) ∈ (0, 1)2,

−Δz = f .

u(x, y) = z(x, y) = sin(�x) sin(�y) for x = (x, y) ∈ [0, 1]2.

5.2.2  Setups for performance analysis

In the following, we analyze the performance of our pro-
posed approach, while varying the number of hidden lay-
ers and the number of neurons therein. Like in the previ-
ous numerical experiments, we consider fully connected 
neural networks with hyperbolic tangent activation func-
tion. For the hyper parameters of the neural networks, i.e. 
the number of hidden layers and the number of neurons, 
we applied a grid search to {1, 2, 4, 6, 8} hidden layers and 
{10, 20, 40} neurons.

For a fair comparison with the FEM guided adjoint com-
putations, we chose to reuse the neural network and con-
tinue its training in each refinement cycle. However, since 
the PDE and the goal functional are linear, it would have 
been sufficient to train the neural network based adjoint 
solution once prior to the entire FEM simulations.

Furthermore, we investigated whether our method 
can lead to computational improvements over the finite 
element method on fine meshes, where the number of 
degrees of freedom is large and FEM simulations are com-
putationally expensive. To reduce the computational effort 
when dealing with neural networks and a large number 
of degrees of freedom, we are reusing the neural network 
from the last refinement cycle. We expect the weights and 

Table 3  Section 5.1.3: Error 
estimator results for mean 
squared value goal functional

Ref. FEM NN

DoFs J(u) − J(uh) Est. error Ieff DoFs J(u) − J(uh) Est. error Ieff

0 9 7.26e−4 5.63e−4 0.776 9 7.26e−4 1.89e−4 0.261
1 25 1.87e−4 1.75e−4 0.936 25 1.87e−4 1.34e−4 0.713
2 81 4.71e−5 4.64e−5 0.987 81 4.71e−5 3.39e−5 0.721
3 289 1.16e−5 1.18e−5 1.01 289 1.16e−5 8.53e−6 0.732
4 1041 2.89e−6 3.16e−6 1.09 745 4.57e−6 3.06e−6 0.669
5 3561 6.86e−7 9.38e−7 1.37 2865 9.95e−7 7.51e−7 0.755

Fig. 3  Section 5.1.3: Grid 
refinement with mean squared 
value goal functional
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biases from the last refinement cycle to be a good initial 
value for the weights and biases in the current refinement 
cycle. Additionally, instead of working with a large num-
ber of collocation points, on fine meshes we randomly 
sample 10,000 collocation points from the coordinates 
of the degrees of freedom. On the one hand, we chose 
this restriction since we are using L-BFGS to optimize the 
parameters of our neural network. This quasi-Newton 
scheme has a higher order of convergence than Adam or 
other gradient descent based schemes, but in its original 
formulation does not allow batch-wise optimization. Due 
to these memory limitations of the L-BFGS method, we 
decided to limit the number of collocation points. On the 
other hand, our neural network based ansatz is a mesh-
less method, which might not require all coordinates of 
the degrees of freedom as collocation points to achieve a 
sufficient accuracy.

5.2.3  Discussion of our findings

To access the performance of our approach for different 
hyper parameters of the neural networks, we summarize 
the effectivity indices in Table 4. Here we start at refine-
ment cycle 0 with 25 degrees of freedom and through 
adaptive mesh refinement end up with close to 500,000 
degrees of freedom at refinement cycle 8. Taking a closer 
look at the effectivity indices of our simulations, we 
observe that the effectivity indices of the neural network 
mostly coincide with the effectivity indices from the finite 
element method computations independently of the 
number of hidden layers and the number of neurons. This 
indicates that our approach yields accurate solutions for 
all neural network hyper parameters from our experiment.

To investigate whether our method can lead to speed 
ups over the finite element method on fine meshes, we 

inspect the CPU times of the finite element method and 
the neural network based approach. The FEM based DWR 
method with 474,153 degrees of freedom in the 8th refine-
ment cycle had a mean CPU time of 169.2 s and a standard 
deviation of 0.5 s in 10 independent runs. In Table 5 the 
CPU times for our approach with neural networks with dif-
ferent hyper parameters are being reported. We observe 
that the computational time increases with more hid-
den layers. Moreover, one hidden layer neural networks 
were on average twice as fast as the FEM simulations. 
Finally, neural networks with up to four hidden layers 
had on average a shorter CPU time than the FEM based 
approach. Note that the neural networks with 8 hidden 
layers with 10 neurons have a large mean and standard 
deviation due to a statistical outlier. Here in one of the 
runs the CPU time amounted to more than 3,000 seconds 
because of repeated failure to converge during the train-
ing procedure.

In Fig. 4, we display the training times of the neural 
networks in each refinement cycle. The solid lines and the 
shaded regions, which are bounded by dashed lines, repre-
sent the mean and one standard deviation of the training 

Table 4  Section 5.2: Mean of the effectivity indices of 10 independ-
ent runs for the Poisson problem with analytical primal and adjoint 
solution. The standard deviation for the neural network based sim-
ulations is 0.00 for the all but the last refinement cycle, where we 

have a standard deviation of 0.01. The neural networks are being 
denoted by tuples where the first number corresponds to the num-
ber of hidden layers and the second number represents the num-
ber of neurons therein

Ref. FEM NN

(1,10) (1,20) (1,40) (2,10) (2,20) (2,40) (4,10) (4,20) (4,40) (6,10) (6,20) (6,40) (8,10) (8,20) (8,40)

0 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990
1 0.997 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
4 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11
5 1.10 1.11 1.11 1.11 1.10 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.10 1.11 1.11
6 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
7 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
8 1.08 1.07 1.06 1.06 1.07 1.06 1.07 1.07 1.07 1.06 1.07 1.07 1.06 1.06 1.07 1.07

Table 5  Section  5.2: CPU times (in seconds) for 10 independent 
runs of the proposed neural network approach applied to the Pois-
son problem with analytical primal and adjoint solution. We com-
pare various number of hidden layers and the number of neurons 
therein

Neurons Layers

1 2 4 6 8

10 79.0 ± 11 99.0 ± 9 135.9 ± 23 221.5 ± 183665.8 ± 876

20 79.4 ± 7 100.0 ± 9 139.5 ± 38 175.8 ± 44 258.4 ± 97

40 74.2 ± 4 113.5 ± 14 162.0 ± 32 204.2 ± 56 271.8 ± 74
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times. We observe that for all neural network hyper param-
eters the 0th refinement cycle is the most CPU time inten-
sive and the remaining refinement cycles have a one order 
of magnitude shorter neural network training time. Moreo-
ver, deeper neural networks, i.e. models with more hidden 
layers, in general require a higher training time than shal-
low neural networks, i.e. models with fewer hidden layers, 
due to a higher number of weights and biases which need 
to be optimized. Note that the peak of the training time 
of 8 hidden layer neural networks at 3 refinement cycles 
has been caused by the aforementioned statistical outlier, 
which restarted training more than 100 times in the 3rd 

refinement cycle due to an explosion in the loss value or 
due to being stuck in a local minimum.

In Fig. 5, the number of epochs for training the neu-
ral networks are shown for each refinement cycle. In 
each epoch the weights and biases of the neural net-
work are trained on the full set of collocation points 
with the L-BFGS optimizer. Like before, the solid lines 
and the shaded regions, which are bounded by dashed 
lines, represent the mean and one standard deviation of 
the number of epochs. Analogous to our observations 
of the CPU times, the number of epochs after the 0th 
refinement cycle decreases by an order of magnitude. 

Fig. 4  Section 5.2: Neuronal network training times (in seconds) per refinement cycle for 10 independent runs for the Poisson problem with 
analytical primal and adjoint solution



Vol.:(0123456789)

SN Applied Sciences            (2022) 4:62  | https://doi.org/10.1007/s42452-022-04938-9 Research Article

In the 0th refinement cycle more hidden layers lead to 
a higher number of training epochs. Deeper neural net-
works have a more complex loss surface and thus are 
more prone to an explosion of the loss or a stagnation 
of the loss at an suboptimal value. This is being reflected 
in the higher number of epochs in the 0th refinement 
cycle. Nevertheless, in the remaining refinement cycles 
the number of epochs does not seem to depend on the 
depth of the neural networks.

5.3  Nonlinear PDE and nonlinear goal functional

In the second numerical problem, we now consider the 
case were both the PDE and the goal functional are non-
linear. We add the scaled nonlinear term u2 to the previ-
ous equation, such that the new problem is given by

Fig. 5  Section 5.2: Number of epochs per refinement cycle to train neural network for 10 independent runs for the Poisson problem with 
analytical primal and adjoint solution
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with 𝛾 > 0 and f = −1 . For our nonlinear goal functional, 
we choose the mean squared value goal functional from 
the previous example. The adjoint problem thus reads:

Find z ∈ H1
0
(Ω) such that

with corresponding strong form

The training setup is the same as for the mean squared 
value goal functional example. For � = 50 we obtain the 
results shown in Table 6.

Our neural network approach produces different 
results, see Fig. 6, than the finite element method, but at 
the efficiency indices and the refined grids we observe 
that our approach still works well for adaptive mesh 
refinement.

−Δu + �u2 = f inΩ

u = 0 on �Ω,

(∇� ,∇z) + 2�(� , zu) =

(
� ,

2u

|Ω|

)
∀� ∈ H1

0
(Ω),

−Δz + 2�zu =
2u

|Ω|
.

6  Conclusions and outlook

In this work, we proposed neural network guided a pos-
teriori error estimation with the dual weighted residual 
method. Specifically, we computed the adjoint solution 
with feedforward neural networks with two or three hid-
den layers. To use existing FEM software we first solved 
the adjoint PDE with neural networks and then projected 
the solution into the FEM space of the adjoint PDE. We 
demonstrated experimentally that neural network based 
solutions of the strong formulation of the adjoint PDE 
yield excellent approximations for dual weighted residual 
error estimates. Therefore, neural networks might be an 
alternative way to compute adjoint sensitivities within 
goal-oriented error estimators for certain problems, when 
the number of degrees of freedom is high. Furthermore 
they admit greater flexibility being a meshless method 
and it would be interesting to investigate in future works 
how different choices of collocation points influence the 
quality of the error estimates. In the current work, we 
observed an advantage in computing times (in terms of 
CPU time) when using more than 400,000 degrees of free-
dom. Additionally, we could establish the same accuracies 
and robustness as for pure FEM problems. However, an 

Table 6  Section 5.3: Error 
estimator results for the 
nonlinear PDE

Ref. FEM NN

DoFs J(u) − J(uh) Est. error Ieff DoFs J(u) − J(uh) Est. error Ieff

0 9 1.21e−3 8.64e−4 0.713 9 1.21e−3 0.821e−4 0.677
1 25 3.58e−4 3.32e−4 0.926 25 3.58e−4 4.88e−4 1.36
2 81 9.40e−5 9.29e−5 0.988 81 9.40e−5 4.24e−5 0.451
3 289 2.33e−5 2.39e−5 1.03 241 3.01e−5 2.68e−5 0.890
4 945 6.03e−6 7.17e−6 1.19 809 7.67e−6 4.97e−6 0.648
5 3089 1.25e−6 2.15e−6 1.72 2947 1.52e−6 1.58e−6 1.04

Fig. 6  Section 5.3: Grid refine-
ment for the nonlinear PDE
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important current limitation of our methodology is that 
we work with the strong formulation of the PDE, whose 
derivation from the weak formulation can be very involved 
for more complex problems, e.g. multiphysics. Hence, if an 
energy minimization formulation exists, this should be a 
viable alternative to our strong form of the adjoint PDE. 
This alternative problem can be solved with neural net-
works with the “Deep Ritz Method” [14, 50]. Nevertheless, 
the energy minimization formulation does not exist for all 
partial differential equations. For this reason in the future, 
we are going to analyze neural network based methods, 
which work with the variational formulation, e.g. VPINNs 
[28].
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