5,389 research outputs found

    A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

    Full text link
    Recurrent neural networks (RNNs) stand at the forefront of many recent developments in deep learning. Yet a major difficulty with these models is their tendency to overfit, with dropout shown to fail when applied to recurrent layers. Recent results at the intersection of Bayesian modelling and deep learning offer a Bayesian interpretation of common deep learning techniques such as dropout. This grounding of dropout in approximate Bayesian inference suggests an extension of the theoretical results, offering insights into the use of dropout with RNN models. We apply this new variational inference based dropout technique in LSTM and GRU models, assessing it on language modelling and sentiment analysis tasks. The new approach outperforms existing techniques, and to the best of our knowledge improves on the single model state-of-the-art in language modelling with the Penn Treebank (73.4 test perplexity). This extends our arsenal of variational tools in deep learning.Comment: Added clarifications; Published in NIPS 201

    Bayesian Dropout

    Full text link
    Dropout has recently emerged as a powerful and simple method for training neural networks preventing co-adaptation by stochastically omitting neurons. Dropout is currently not grounded in explicit modelling assumptions which so far has precluded its adoption in Bayesian modelling. Using Bayesian entropic reasoning we show that dropout can be interpreted as optimal inference under constraints. We demonstrate this on an analytically tractable regression model providing a Bayesian interpretation of its mechanism for regularizing and preventing co-adaptation as well as its connection to other Bayesian techniques. We also discuss two general approximate techniques for applying Bayesian dropout for general models, one based on an analytical approximation and the other on stochastic variational techniques. These techniques are then applied to a Baysian logistic regression problem and are shown to improve performance as the model become more misspecified. Our framework roots dropout as a theoretically justified and practical tool for statistical modelling allowing Bayesians to tap into the benefits of dropout training.Comment: 21 pages, 3 figures. Manuscript prepared 2014 and awaiting submissio

    Variational Dropout and the Local Reparameterization Trick

    Get PDF
    We investigate a local reparameterizaton technique for greatly reducing the variance of stochastic gradients for variational Bayesian inference (SGVB) of a posterior over model parameters, while retaining parallelizability. This local reparameterization translates uncertainty about global parameters into local noise that is independent across datapoints in the minibatch. Such parameterizations can be trivially parallelized and have variance that is inversely proportional to the minibatch size, generally leading to much faster convergence. Additionally, we explore a connection with dropout: Gaussian dropout objectives correspond to SGVB with local reparameterization, a scale-invariant prior and proportionally fixed posterior variance. Our method allows inference of more flexibly parameterized posteriors; specifically, we propose variational dropout, a generalization of Gaussian dropout where the dropout rates are learned, often leading to better models. The method is demonstrated through several experiments
    • …
    corecore