6,584 research outputs found

    GRASE: Granulometry Analysis with Semi Eager Classifier to Detect Malware

    Get PDF
    Technological advancement in communication leading to 5G, motivates everyone to get connected to the internet including ‘Devices’, a technology named Web of Things (WoT). The community benefits from this large-scale network which allows monitoring and controlling of physical devices. But many times, it costs the security as MALicious softWARE (MalWare) developers try to invade the network, as for them, these devices are like a ‘backdoor’ providing them easy ‘entry’. To stop invaders from entering the network, identifying malware and its variants is of great significance for cyberspace. Traditional methods of malware detection like static and dynamic ones, detect the malware but lack against new techniques used by malware developers like obfuscation, polymorphism and encryption. A machine learning approach to detect malware, where the classifier is trained with handcrafted features, is not potent against these techniques and asks for efforts to put in for the feature engineering. The paper proposes a malware classification using a visualization methodology wherein the disassembled malware code is transformed into grey images. It presents the efficacy of Granulometry texture analysis technique for improving malware classification. Furthermore, a Semi Eager (SemiE) classifier, which is a combination of eager learning and lazy learning technique, is used to get robust classification of malware families. The outcome of the experiment is promising since the proposed technique requires less training time to learn the semantics of higher-level malicious behaviours. Identifying the malware (testing phase) is also done faster. A benchmark database like malimg and Microsoft Malware Classification challenge (BIG-2015) has been utilized to analyse the performance of the system. An overall average classification accuracy of 99.03 and 99.11% is achieved, respectively

    Hidden in the Cloud : Advanced Cryptographic Techniques for Untrusted Cloud Environments

    Get PDF
    In the contemporary digital age, the ability to search and perform operations on encrypted data has become increasingly important. This significance is primarily due to the exponential growth of data, often referred to as the "new oil," and the corresponding rise in data privacy concerns. As more and more data is stored in the cloud, the need for robust security measures to protect this data from unauthorized access and misuse has become paramount. One of the key challenges in this context is the ability to perform meaningful operations on the data while it remains encrypted. Traditional encryption techniques, while providing a high level of security, render the data unusable for any practical purpose other than storage. This is where advanced cryptographic protocols like Symmetric Searchable Encryption (SSE), Functional Encryption (FE), Homomorphic Encryption (HE), and Hybrid Homomorphic Encryption (HHE) come into play. These protocols not only ensure the confidentiality of data but also allow computations on encrypted data, thereby offering a higher level of security and privacy. The ability to search and perform operations on encrypted data has several practical implications. For instance, it enables efficient Boolean queries on encrypted databases, which is crucial for many "big data" applications. It also allows for the execution of phrase searches, which are important for many machine learning applications, such as intelligent medical data analytics. Moreover, these capabilities are particularly relevant in the context of sensitive data, such as health records or financial information, where the privacy and security of user data are of utmost importance. Furthermore, these capabilities can help build trust in digital systems. Trust is a critical factor in the adoption and use of digital services. By ensuring the confidentiality, integrity, and availability of data, these protocols can help build user trust in cloud services. This trust, in turn, can drive the wider adoption of digital services, leading to a more inclusive digital society. However, it is important to note that while these capabilities offer significant advantages, they also present certain challenges. For instance, the computational overhead of these protocols can be substantial, making them less suitable for scenarios where efficiency is a critical requirement. Moreover, these protocols often require sophisticated key management mechanisms, which can be challenging to implement in practice. Therefore, there is a need for ongoing research to address these challenges and make these protocols more efficient and practical for real-world applications. The research publications included in this thesis offer a deep dive into the intricacies and advancements in the realm of cryptographic protocols, particularly in the context of the challenges and needs highlighted above. Publication I presents a novel approach to hybrid encryption, combining the strengths of ABE and SSE. This fusion aims to overcome the inherent limitations of both techniques, offering a more secure and efficient solution for key sharing and access control in cloud-based systems. Publication II further expands on SSE, showcasing a dynamic scheme that emphasizes forward and backward privacy, crucial for ensuring data integrity and confidentiality. Publication III and Publication IV delve into the potential of MIFE, demonstrating its applicability in real-world scenarios, such as designing encrypted private databases and additive reputation systems. These publications highlight the transformative potential of MIFE in bridging the gap between theoretical cryptographic concepts and practical applications. Lastly, Publication V underscores the significance of HE and HHE as a foundational element for secure protocols, emphasizing its potential in devices with limited computational capabilities. In essence, these publications not only validate the importance of searching and performing operations on encrypted data but also provide innovative solutions to the challenges mentioned. They collectively underscore the transformative potential of advanced cryptographic protocols in enhancing data security and privacy, paving the way for a more secure digital future

    Computational techniques to interpret the neural code underlying complex cognitive processes

    Get PDF
    Advances in large-scale neural recording technology have significantly improved the capacity to further elucidate the neural code underlying complex cognitive processes. This thesis aimed to investigate two research questions in rodent models. First, what is the role of the hippocampus in memory and specifically what is the underlying neural code that contributes to spatial memory and navigational decision-making. Second, how is social cognition represented in the medial prefrontal cortex at the level of individual neurons. To start, the thesis begins by investigating memory and social cognition in the context of healthy and diseased states that use non-invasive methods (i.e. fMRI and animal behavioural studies). The main body of the thesis then shifts to developing our fundamental understanding of the neural mechanisms underpinning these cognitive processes by applying computational techniques to ana lyse stable large-scale neural recordings. To achieve this, tailored calcium imaging and behaviour preprocessing computational pipelines were developed and optimised for use in social interaction and spatial navigation experimental analysis. In parallel, a review was conducted on methods for multivariate/neural population analysis. A comparison of multiple neural manifold learning (NML) algorithms identified that non linear algorithms such as UMAP are more adaptable across datasets of varying noise and behavioural complexity. Furthermore, the review visualises how NML can be applied to disease states in the brain and introduces the secondary analyses that can be used to enhance or characterise a neural manifold. Lastly, the preprocessing and analytical pipelines were combined to investigate the neural mechanisms in volved in social cognition and spatial memory. The social cognition study explored how neural firing in the medial Prefrontal cortex changed as a function of the social dominance paradigm, the "Tube Test". The univariate analysis identified an ensemble of behavioural-tuned neurons that fire preferentially during specific behaviours such as "pushing" or "retreating" for the animal’s own behaviour and/or the competitor’s behaviour. Furthermore, in dominant animals, the neural population exhibited greater average firing than that of subordinate animals. Next, to investigate spatial memory, a spatial recency task was used, where rats learnt to navigate towards one of three reward locations and then recall the rewarded location of the session. During the task, over 1000 neurons were recorded from the hippocampal CA1 region for five rats over multiple sessions. Multivariate analysis revealed that the sequence of neurons encoding an animal’s spatial position leading up to a rewarded location was also active in the decision period before the animal navigates to the rewarded location. The result posits that prospective replay of neural sequences in the hippocampal CA1 region could provide a mechanism by which decision-making is supported

    Development and assessment of learning-based vessel biomarkers from CTA in ischemic stroke

    Get PDF

    Graph Neural Network-based EEG Classification:A Survey

    Get PDF
    Graph neural networks (GNN) are increasingly used to classify EEG for tasks such as emotion recognition, motor imagery and neurological diseases and disorders. A wide range of methods have been proposed to design GNN-based classifiers. Therefore, there is a need for a systematic review and categorisation of these approaches. We exhaustively search the published literature on this topic and derive several categories for comparison. These categories highlight the similarities and differences among the methods. The results suggest a prevalence of spectral graph convolutional layers over spatial. Additionally, we identify standard forms of node features, with the most popular being the raw EEG signal and differential entropy. Our results summarise the emerging trends in GNN-based approaches for EEG classification. Finally, we discuss several promising research directions, such as exploring the potential of transfer learning methods and appropriate modelling of cross-frequency interactions.</p

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size

    Development and assessment of learning-based vessel biomarkers from CTA in ischemic stroke

    Get PDF

    Hybrid Cloud-Based Privacy Preserving Clustering as Service for Enterprise Big Data

    Get PDF
    Clustering as service is being offered by many cloud service providers. It helps enterprises to learn hidden patterns and learn knowledge from large, big data generated by enterprises. Though it brings lot of value to enterprises, it also exposes the data to various security and privacy threats. Privacy preserving clustering is being proposed a solution to address this problem. But the privacy preserving clustering as outsourced service model involves too much overhead on querying user, lacks adaptivity to incremental data and involves frequent interaction between service provider and the querying user. There is also a lack of personalization to clustering by the querying user. This work “Locality Sensitive Hashing for Transformed Dataset (LSHTD)” proposes a hybrid cloud-based clustering as service model for streaming data that address the problems in the existing model such as privacy preserving k-means clustering outsourcing under multiple keys (PPCOM) and secure nearest neighbor clustering (SNNC) models, The solution combines hybrid cloud, LSHTD clustering algorithm as outsourced service model. Through experiments, the proposed solution is able is found to reduce the computation cost by 23% and communication cost by 6% and able to provide better clustering accuracy with ARI greater than 4.59% compared to existing works

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Medical Image Analysis using Deep Relational Learning

    Full text link
    In the past ten years, with the help of deep learning, especially the rapid development of deep neural networks, medical image analysis has made remarkable progress. However, how to effectively use the relational information between various tissues or organs in medical images is still a very challenging problem, and it has not been fully studied. In this thesis, we propose two novel solutions to this problem based on deep relational learning. First, we propose a context-aware fully convolutional network that effectively models implicit relation information between features to perform medical image segmentation. The network achieves the state-of-the-art segmentation results on the Multi Modal Brain Tumor Segmentation 2017 (BraTS2017) and Multi Modal Brain Tumor Segmentation 2018 (BraTS2018) data sets. Subsequently, we propose a new hierarchical homography estimation network to achieve accurate medical image mosaicing by learning the explicit spatial relationship between adjacent frames. We use the UCL Fetoscopy Placenta dataset to conduct experiments and our hierarchical homography estimation network outperforms the other state-of-the-art mosaicing methods while generating robust and meaningful mosaicing result on unseen frames.Comment: arXiv admin note: substantial text overlap with arXiv:2007.0778
    corecore