3,161 research outputs found

    Variance Allocation and Shapley Value

    Full text link
    Motivated by the problem of utility allocation in a portfolio under a Markowitz mean-variance choice paradigm, we propose an allocation criterion for the variance of the sum of nn possibly dependent random variables. This criterion, the Shapley value, requires to translate the problem into a cooperative game. The Shapley value has nice properties, but, in general, is computationally demanding. The main result of this paper shows that in our particular case the Shapley value has a very simple form that can be easily computed. The same criterion is used also to allocate the standard deviation of the sum of nn random variables and a conjecture about the relation of the values in the two games is formulated.Comment: 20page

    A Theory of Attribution

    Get PDF
    Attribution of economic joint effects is achieved with a random order model of their relative importance. Random order consistency and elementary axioms uniquely identify linear and proportional marginal attribution. These are the Shapley (1953) and proportional (Feldman (1999, 2002) and Ortmann (2000)) values of the dual of the implied cooperative game. Random order consistency does not use a reduced game. Restricted potentials facilitate identification of proportional value derivatives and coalition formation results. Attributions of econometric model performance, using data from Fair (1978), show stability across models. Proportional marginal attribution (PMA) is found to correctly identify factor relative importance and to have a role in model construction. A portfolio attribution example illuminates basic issues regarding utility attribution and demonstrates investment applications. PMA is also shown to mitigate concerns (e.g., Thomas (1977)) regarding strategic behavior induced by linear cost attribution.Coalition formation; consistency; cost allocation; joint effects; proportional value; random order model; relative importance; restricted potential; Shapley value and variance decomposition

    Cores of Cooperative Games in Information Theory

    Get PDF
    Cores of cooperative games are ubiquitous in information theory, and arise most frequently in the characterization of fundamental limits in various scenarios involving multiple users. Examples include classical settings in network information theory such as Slepian-Wolf source coding and multiple access channels, classical settings in statistics such as robust hypothesis testing, and new settings at the intersection of networking and statistics such as distributed estimation problems for sensor networks. Cooperative game theory allows one to understand aspects of all of these problems from a fresh and unifying perspective that treats users as players in a game, sometimes leading to new insights. At the heart of these analyses are fundamental dualities that have been long studied in the context of cooperative games; for information theoretic purposes, these are dualities between information inequalities on the one hand and properties of rate, capacity or other resource allocation regions on the other.Comment: 12 pages, published at http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/318704 in EURASIP Journal on Wireless Communications and Networking, Special Issue on "Theory and Applications in Multiuser/Multiterminal Communications", April 200

    A shapley value approach to pricing climate risks

    Get PDF
    This paper prices the risk of climate change by calculating a lower bound for the price of a virtual insurance policy against climate risks associated with the business as usual (BAU) emissions path. In analogy with ordinary insurance pricing, this price depends on the current risk to which society is exposed on the BAU emissions path and on a second emissions path reflecting risks that society is willing to take. The difference in expected damages on these two paths is the price which a risk neutral insurer would charge for the risk swap excluding transaction costs and profits, and it is also a lower bound on society's willingness to pay for this swap. The price is computed by (1) identifying a probabilistic risk constraint that society accepts, (2) computing an optimal emissions path satisfying that constraint using an abatement cost function, (3) computing the extra expected damages from the business as usual path, above those of the risk constrained path, and (4) apportioning those excess damages over the emissions per ton in the various time periods. The calculations follow the 2010 US government social cost of carbon analysis, and are done with DICE2009

    An anytime approximation method for the inverse Shapley value problem

    No full text
    Coalition formation is the process of bringing together two or more agents so as to achieve goals that individuals on their own cannot, or to achieve them more efficiently. Typically, in such situations, the agents have conflicting preferences over the set of possible joint goals. Thus, before the agents realize the benefits of cooperation, they must find a way of resolving these conflicts and reaching a consensus. In this context, cooperative game theory offers the voting game as a mechanism for agents to reach a consensus. It also offers the Shapley value as a way of measuring the influence or power a player has in determining the outcome of a voting game. Given this, the designer of a voting game wants to construct a game such that a players Shapley value is equal to some desired value. This is called the inverse Shapley value problem. Solving this problem is necessary, for instance, to ensure fairness in the players voting powers. However, from a computational perspective, finding a players Shapley value for a given game is #p-complete. Consequently, the problem of verifying that a voting game does indeed yield the required powers to the agents is also #P-complete. Therefore, in order to overcome this problem we present a computationally efficient approximation algorithm for solving the inverse problem. This method is based on the technique of successive approximations; it starts with some initial approximate solution and iteratively updates it such that after each iteration, the approximate gets closer to the required solution. This is an anytime algorithm and has time complexity polynomial in the number of players. We also analyze the performance of this method in terms of its approximation error and the rate of convergence of an initial solution to the required one. Specifically, we show that the former decreases after each iteration, and that the latter increases with the number of players and also with the initial approximation error. Copyright © 2008, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaarnas.org). All rights reserved

    Towards Efficient Data Valuation Based on the Shapley Value

    Full text link
    "How much is my data worth?" is an increasingly common question posed by organizations and individuals alike. An answer to this question could allow, for instance, fairly distributing profits among multiple data contributors and determining prospective compensation when data breaches happen. In this paper, we study the problem of data valuation by utilizing the Shapley value, a popular notion of value which originated in coopoerative game theory. The Shapley value defines a unique payoff scheme that satisfies many desiderata for the notion of data value. However, the Shapley value often requires exponential time to compute. To meet this challenge, we propose a repertoire of efficient algorithms for approximating the Shapley value. We also demonstrate the value of each training instance for various benchmark datasets
    corecore