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Abstract   This paper prices the risk of climate change by calculating a lower bound 
for the price of a virtual insurance policy against climate risks associated with the 
business as usual (BAU) emissions path. In analogy with ordinary insurance pricing, 
this price depends on the current risk to which society is exposed on the BAU 
emissions path and on a second emissions path reflecting risks that society is willing to 
take. The difference in expected damages on these two paths is the price which a risk 
neutral insurer would charge for the risk swap excluding transaction costs and profits, 
and it is also a lower bound on society’s willingness to pay for this swap. The price is 
computed by (1) identifying a probabilistic risk constraint that society accepts, (2) 
computing an optimal emissions path satisfying that constraint using an abatement cost 
function, (3) computing the extra expected damages from the business as usual path, 
above those of the risk constrained path, and (4) apportioning those excess damages 
over the emissions per ton in the various time periods. The calculations follow the 
2010 US government social cost of carbon analysis, and are done with DICE2009. 
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1.  Introduction  

   

Reducing carbon emissions not only reduces the damages resulting from global temperature rise, 

it also reduces the probability of catastrophic climate change. Individuals are generally risk averse, and 

various authors have suggested that society should be willing to pay a “risk premium” to reduce these 

catastrophic risks.  A recent review (Kousky et al 2011) finds very few papers that calculate an explicit 

risk premium. Some authors suggest that no risk premium is necessary (Mendelsohn 2008, Nordhaus 

2007), others speculate that a risk premium of 50% of the social cost of carbon is not out of the question 

(Yohe and Tol, 2008). Most approaches make assumptions about the form of a social welfare or social 

utility function. Given the difficulties inherent in viewing climate change as a social utility optimization 

problem,1

 

 some  authors have suggested that the climate change problem be viewed through the lens of 

insurance or risk management (e.g., Weitzman 2009).   

In view of the diversity of methods and putative values, it is perhaps useful to take a different fix 

on the problem based on a very different point of departure. Foregoing any attempt to quantify a social 

utility function, this approach follows Anderson and Bows (2011) by interpreting various international 

agreements as expressions of society’s desire to trade the current climate risk along the BAU path for the 

risk along an emissions path that satisfies a risk constraint: the probability of raising mean temperature by 

more than 2°C in 200 years should not exceed 19%. Risk trading transpires in insurance markets in which 

a risk neutral insurance company and a risk averse customer agree to a risk swap. Instead of postulating a 

social utility function and computing how much society should be willing to pay, the expressed social 

preference for a swap is used to infer a lower bound on what society is willing to pay. This lower bound is 

the price that a risk neutral insurer would charge for the swap excluding transaction costs and profit, 

namely the difference in expected damages between the business-as-usual (BAU) emissions path and the 

optimal risk compliant path. This lower bound applies to the willingness to pay (WTP) of any individual 

who would agree to the swap, regardless of the degree of risk aversion.   A mildly risk averse person 

would be willing to pay a bit more, a strongly risk averse person would pay much more. If each individual 

applies a constant relative risk aversion (CRRA) utility function, popular among economists, then the sum 

of these functions is not CRRA. Conversely, assuming an aggregate CRRA utility function challenges the 

                                                 
1 According to the theory of rational decision (Savage 1954), the preferences of a rational individual can be uniquely 
represented as expected utility, where the utility function is determined up to the choice of an anchor value at zero 
and unit. The concepts of subjective probability and utility are meaningful for individual choice. The Condorcet 
voting paradox shows that straightforward preference aggregation produces intransitivities. Arrow’s impossibility 
theorem shows that there is no acceptable  way of representing a group of rational individuals as a rational 
preference scheme obeying Savage’s axioms. Hence group preferences cannot be represented as expected utility 
(Arrow 1950). 



conomics Discussion Paper 
 

2 
 

modeler to explain how this function arises from aggregating individual utility functions. The risk swap  

approach avoids the problem of deriving or otherwise justifying a group utility function. 

 

We calculate this lower bound using the 2009 Excel version of the integrated assessment model 

(IAM) DICE, created by William Nordhaus. Calculations of damages are performed out to 2205 in ten-

year periods.  We follow the 2010 US government social cost of carbon analysis focusing only on 

damages, restricting uncertainty quantification to climate sensitivity, and applying discount rates of 2.5%, 

3% and 5%.  Commensurate with the simplified uncertainty quantification, the optimal risk compliant 

emissions path is computed by assuming a simple quadratic cost abatement function; an exponential 

abatement cost function is used for comparison. Alternatively, the optimal risk compliant path could be 

selected judgmentally, without making abatement cost considerations explicit. Basing the lower bound 

risk premium on damages comports with an implicit abatement cost estimation.     

    

Given the total price for the risk swap, the question arises how to apportion the willingness to pay 

(WTP) value over periods in order to have a per period, per ton estimate of the lower bound on our WTP 

to meet our risk constraint.  The Shapley cost allocation method (Roth and Verrecchia 1979; Roth 1988) 

is applied for this purpose, treating emitters in various periods as members of potential coalitions to 

achieve the emissions reduction target.  The Shapley approach gives the average contribution of each 

period to meeting the risk constraint and is thus a natural way to apportion our total WTP over the total 

emissions reductions. 

 

This approach can serve as a complement to utility‒based discussions of social risk aversion. The 

calculations are intended to illustrate the method and are constrained in two significant respects. First, the 

uncertainty quantification with regard to climate change is restricted in conformity with the 2010 US 

government social cost of carbon analysis, and falls well short of a state of the art structured expert 

judgment quantification (Cooke 2011). Second, the cost abatement function used to determine the optimal 

risk compliant emissions path incorporates no learning and no uncertainty. The approach differs from 

other approaches in positing a risk swap, and in requiring explicit uncertainty quantification.  

 

Per ton carbon, the minimum WTP to meet the constraint beginning in 2015, in 2008 USD, is 

$106 with a discount rate of 2.5%, $64 for a discount rate of 3%, and $12 for a discount rate of 5%. Since 

one ton CO2 contains 12/44 tons carbon, these values convert to $29, $17, $3 per ton CO2. The marginal 

damages along the optimal risk constrained path are $248, $177 and $64 per GtC respectively for the 

three discount rates.  In as much as society agrees to pay both costs, our minimum WTP to meet the risk 
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constraint and the marginal damages once on the risk constrained path gives $354, $241 and $76 per GtC 

for the three discount rates.  This can be compared to the marginal damages along BAU, which for 2015 

are computed to be $276, $196, and $69 per GtC for the three discount rates.  As can be seen, at low 

discount rates the risk constrained approach produces values that are about 30% higher than the marginal 

damages at the BAU, and the ratio decreases as the discount rate increases.  Per ton CO2 these convert to 

$96, $66 and $21 for the risk constrained path, versus   $75,  $53 and  $19 for BAU.  

 

The next section demonstrates that the reduction in expected damages is a lower bound on WTP 

to reduce risk.  Section 3 develops the risk constraint and operationalizes it within DICE.  Section 4 

presents the results of the Shapley value approach in a deterministic framework, while Section 5 adds 

uncertainty over the climate sensitivity.  Section 6 concludes. 

 

2.  Abatement as Insurance against Climate Damages 

 

 It is straightforward to show that a risk averse individual would be willing to pay at least the 

reduction in expected damages for an insurance policy, or any other risk reduction measure. Focusing on 

insurance reflects a familiar way of thinking about risk.  The insurance analogy does not go further than 

this; clearly, a key feature of climate change is that the risks are not diversifiable or insurable in any 

market.   

 Consider a risk averse individual with initial wealth W facing a risk that could cause X amount of 

damage.  Both W and X are measured in dollars.  The individual could purchase insurance that fully 

reimburses damages at price P, that is, (s)he could trade their current risk for one with a reduced variance 

through the purchase of an insurance policy.  (S)he will choose to do this if the utility U(.) with the policy 

is greater than their expected utility without it: 

 

U(W-P) ≥ EU(W-X)                                                                           (1) 

 

The individual will be willing to pay for this policy until their utility with the policy just equals their 

expected utility without the policy.  Denote the price of this policy by P*.  Since the individual is risk-

averse, U(.) is concave, so by Jensen’s inequality: 

 

U(E(W−X)) ≥ EU(W−X) = U(W – P*).                                                        (2) 
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And thus, since U is an increasing function, 

 

W – EX ≥ W – P*, or E(X) ≤ P*.                                                            (3) 

 

As is intuitive, the lower bound on a risk-averse individual’s willingness to pay is the expected damages. 

This simple set-up is easy to follow, yet we assumed throughout that the wealth, W, was fixed.  If 

wealth is not fixed, a more complicated set-up is required, but the end result is the same.  Consider an 

insurance policy to reduce, but not eliminate, a risk.  This can be seen by examining the cumulative 

distribution functions (cdfs) of the initial risk and the potential trade for a lower risk.  In Figure 1, the 

solid line is a damage cdf representing an initial risk.  This could be traded for the risk given by the 

dashed cdf with lower expected damages and lower variance.  Trading the solid risk for the dashed risk is 

not free, however. The minimal premium an insurance company would charge is the difference in 

expectations between the solid and dashed risks.   Assume the cost for this trade is $100.  Adding this cost 

to the dashed cdf has the effect of moving the dashed cdf to the right, generating the dotted cdf.  When the 

two shaded areas between the dotted and solid curves are equal, then the expected damages between the 

two curves are equal, yet risk-averse individuals prefer the dotted curve as it generates higher utility. 

Their utility function is concave and the expected utility of a lower variance risk is greater than the 

expected utility of a higher variance risk with the same expectation2

 

. 

Figure 1: Cumulative distribution functions 

 
 

                                                 
2 This is an approximation based on neglecting higher order terms in the Taylor expansion of U(X) around the 
expectation of X. 

damages 
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3.  A Risk Constraint for Emissions 

 

This type of risk trading can be used to conceptualize the climate change problem.  Society 

currently owns a risk corresponding to the business-as-usual (BAU) scenario.  Many authors have 

advocated insurance against climate risks  (Tol and Yohe 2006). In this paper we define our risk 

constraint as limiting warming to 2°C, as this was articulated in the Copenhagen Accord.  Such a 

constraint can only be met probabilistically.  Since the Copenhagen Accord did not specify the probability 

with which society wants to achieve this target, we follow Anderson and Bows (2011), who interpret the 

statement to mean no more than a 5% to 33% chance of exceeding the 2°C target.  This would imply that 

the probability of staying under the target in 200 years should be between 0.67 and 0.95. The average 0.81 

is used for this exercise.  Hence, the risk constraint is: “minimize expected costs while keeping the risk of 

exceeding 2°C in 200 years less than 0.19.” 

  

The analysis is done using the 2009 Excel version of DICE (Nordhaus 2008) and follows the2010 US 

government social cost of carbon analysis (Interagency Working Group on Social Cost of Carbon 2010) 

approach of probabilizing the climate sensitivity parameter. This paper adopts a log-normal distribution 

for climate sensitivity. We followed the U.S. government SCC analysis statements in interpreting the 

IPCC’s Fourth Assessment Report as indicating a median value of 3 degrees C per CO2 doubling  and a 

67% confidence interval of 2 to 4.5 C. All other DICE parameters are held at their default values.   

Clearly, many of these assumptions could be questioned and varied; a subject for further work.  The point 

of this paper is simply to demonstrate a risk-constrained approach. 

 

With these assumptions, the BAU path leads to a median temperature increase in 200 years of 

5.6°C, with a 95th percentile of warming of 6.6°C.  There is negligible chance of meeting the risk 

constraint.  This is shown in the left-hand panel of Figure 2.  The right-hand figure shows the cdf of 

temperature in 200 years for the DICE welfare-optimized path, given our assumptions.  This path has a 

less than 5% chance of meeting the risk constraint we have adopted in this paper. 
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Figure 2: Temperature Distribution in 200 years for BAU (left) and DICE optimized (right). The 

horizontal axis is maximum temperature in 200 years, the vertical axis is cumulative probability. 

 
 

 There are many possible emissions paths that could meet our risk target.  Society would 

obviously prefer the least-cost path.  In line with the simplified representation of climate uncertainty, we 

adopt a simplified cost abatement function whereby costs of abatement are proportional to the square of 

the abated amount. This cost function does not depend on time, does not incorporate learning, and does 

not have any uncertain parameters.  Given this cost abatement function, we must find an emissions path 

which minimizes abatement costs among all paths satisfying the risk constraint. A straightforward 

approach to this problem would search all 20‒vectors of emissions satisfying the risk constraint and pick 

the one with lowest cost. The key difficulty is parametrizing the set of emissions paths satisfying the risk 

constraint. We are aided in this by the observation that the maximum temperature is practically 

determined by the total emissions, so long as these emissions are not concentrated at the end of the 

2005‒2205 time period.  The abatement cost function in combination with temporal discounting makes 

this option prohibitively expensive. Using total emissions as a proxy for maximum temperature reduces 

our cost optimization to simple line search.  The optimization procedure is then as follows. 

1. Choose a cost abatement function, a discount rate, an error acceptance value ε > 0 and adjustment 

value δ > 0 

2. Choose a maximum total emissions M 

3. Find an emissions path that minimizes costs over the 2015‒2205 horizon under the constraint that 

the total emissions is  equal to M  

4. Repeatedly sample the climate sensitivity distribution and determine the probability P of 

exceeding 2°C with the chosen emissions path (1000 samples are used for this step) 

5. If P > 19% +ε, put M = M‒δ and go to (2); if P < 19% ‒ ε put M = M + δ and go to (2). 

6. Stop 
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The XL solver was used in step 3 and performed well. The min cost risk compliant emissions path 

depends on the discount rate. For discount rate 2.5%, the cumulative distribution of the maximum 

temperature over 2005‒2205 is shown in Figure 3.  The total emissions along this path is 43 GtC.  For 

different discount rates, the same total emissions applies; that is, adjusting the total emissions so that the 

min cost path satisfying the risk constraint with equality, for different discount rates, leads to the same 

value of 43GtC. This reinforces the supposition that the maximum temperature is driven by the total 

emissions. 

 
Figure 3 Cumulative distribution for maximum temperature for min cost risk compliant emissions path for 2.5% 

discount rate 

 
 

Table 1 shows the min cost emissions paths for discount rates 2.5% and 5%, and compares these with the 

DICE BAU and DICE optimal paths.   
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Table 1: Emissions and Damages for Four Paths; Emissions are in GtC and damages are in 

$Trillion. 

  

BAU 

Emissions 

BAU 

Damages 

Min cost 

emissions, 

2.5% 

discount   

Min cost 

damages 

2.5% 

discount 

Min cost 

emissions, 

5% 

discount   

Min cost 

damages 

5% 

discount 

DICE 

Opt 

Emissions 

ICE Opt 

Damages 

2005 9.06 0.10 9.06 0.10 9.06 0.10 9.06 0.10 

2015 10.46 0.24 5.62 0.23 8.20 0.24 8.96 0.24 

2025 12.39 0.56 6.18 0.46 8.67 0.51 9.99 0.52 

2035 14.57 1.17 6.58 0.86 8.43 0.99 10.84 1.06 

2045 16.74 2.28 6.49 1.46 6.62 1.73 11.23 1.94 

2055 18.72 4.08 5.56 2.30 2.02 2.67 11.03 3.27 

2065 20.39 6.77 3.49 3.33 0.00 3.66 10.22 5.07 

2075 21.70 10.51 0.01 4.40 0.00 4.58 8.89 7.32 

2085 22.59 15.35 0.00 5.35 0.00 5.41 7.15 9.88 

2095 23.16 21.28 0.00 6.18 0.00 6.12 5.15 12.56 

2105 23.36 28.20 0.00 6.87 0.00 6.74 3.04 15.14 

2115 22.64 35.78 0.00 7.40 0.00 7.21 0.93 17.29 

2125 22.15 43.78 0.00 7.79 0.00 7.58 0.08 18.89 

2135 21.45 51.97 0.00 8.08 0.00 7.86 0.06 19.98 

2145 20.63 60.14 0.00 8.30 0.00 8.07 0.05 20.68 

2155 19.66 68.12 0.00 8.45 0.00 8.24 0.04 21.09 

2165 18.62 75.76 0.00 8.58 0.00 8.37 0.03 21.30 

2175 17.53 82.96 0.00 8.67 0.00 8.48 0.02 21.39 

2185 16.40 89.64 0.00 8.75 0.00 8.58 0.02 21.39 

2195 15.25 95.75 0.00 8.82 0.00 8.67 0.02 21.34 

2205 14.08 101.26 0.00 8.89 0.00 8.75 0.01 21.27 

 

 

 

The probabilistic constraint entails emissions restrictions that are significantly more stringent than the 

DICE optimum, as is to be expected. The higher discount rate pushes the emissions forward, also as 

expected. 
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4.  The Shapley Value for Apportioning the Lower Bound on WTP to Meet the Risk Constraint 

 

Damages from climate change are caused by emissions over a sequence of years. We compute 

damages over a time horizon of 200 years and discount them back to the year 2015.  In time periods 1…n, 

let the emissions from the BAU scenario be e1,e2…en, and let r1,…rn denote the emissions from the risk 

constrained path.  Let dj be the damages in period j. Assume first that the damages are known with 

certainty. Without temporal discounting overall damages are: 

 

 D(e1,…en) = d1(e1) + d2(e1,e2),…+ dn(e1,e2…en).                                              (4) 

 

Damages in period 1 are caused by period 1 emitters, damages in period 2 are caused by period 1 and 

period 2 emitters, etc. Letting Dρ denote the net present value of damages discounted at rate ρ, we impose 

discounting by replacing (4) with: 

 

Dρ(e1,…en) = ∑ t=1…n e−ρ(t−1) dt(e1,…et) .                                             (5) 

 

We assume di(0,0,..0) = 0. The damage is non-linear in temperature, temperature is non-linear in 

emissions. 

 The lower bound on WTP is D(e1…en) ‒ D(r1,…rn); or with discounting, Dρ(e1…en) ‒ Dρ(r1,…rn).  

This amount is not paid all at once and we thus consider how this value should be apportioned over the 

periods.  Simply dividing these total damages by total emissions ignores the fact that the effects of 

emissions are cumulative, and ignores temporal discounting.  Because of the non-linearity of the damage 

function, the amount attributed to e1 will depend on the amount emitted in the other periods. One strategy 

would be to let period i pay for the damages caused by emitting ei  instead of ri, given that all previous 

periods 1 ≤  j < i, emitted rj.  The damages apportioned to initial periods are high because they are added 

to high values of emissions in later periods. This apportioning scheme is termed Initially High. The unit 

rate calculation scheme is shown in Table 3 below. 

 

Table 3: Initially High damage apportioning scheme with discount rate ρ 

Period 1 (Dρ(e1…en) ‒ Dρ(r1, e2…en)) / e1. 

Period 2 (Dρ(r1, e2…en) ‒ Dρ(r1, r2, e3…en) ) / e2 

…. …. 

Period n (Dρ(r1,   rn‒1, en) ‒ Dρ(r1,…rn)) / en 
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Alternatively, we could have let period i pay for the damage that would caused by emitting ei, 

given that all subsequent periods j, i < j ≤ n emitted rj. The damages apportioned to initial periods are low 

because they are added to low values of emissions of later periods.  This apportioning scheme is termed 

Initially Low.  The unit rate calculation scheme is shown in Table 4 below. 

 

Table 4: Initially Low damage apportioning scheme with discount rate ρ 

Period 1 (Dρ(e1,r2,…rn) ‒ Dρ(r1,…rn)) / e1 

…. …. 
Period n-1 (Dρ(e1…en‒1, rn) − Dρ(e1…en-2,rn‒1, rn)) / en−1 

Period n (Dρ(e1…en) − Dρ(e1…en‒1, rn)) / en 

 

If we multiply the unit rates in Tables 3 or 4 by the emissions in each period, then the total NPV 

of damages, Dρ(e1…en) ‒ Dρ(r1,…rn), equals the sum of the NPV of damages assigned to each period.  

However, because damages are non linear in emissions, the damages in each period are not the same in 

Tables 3 and 4.  The first table leads a higher contribution for the first period than the second table, and 

conversely for the last period.    

Note that Table 4 could be obtained from Table 3 by reversing the order in which the various 

periods switch from the BAU to the risk compliant paths. In Table 3, period 1 is the first to switch, in 

Table 4, period 1 is the last to switch.  Evidently, any ordering would produce a cost allocation whose 

sum is Dρ(e1…en) ‒ Dρ(r1,…rn).   

Lower bounds WTP apportioned over periods according to these two schemes are shown in Table 

5. Since the calculations are terminated at year 2205, later years’ emissions are not projected as far 

forward as those of earlier years, resulting in a truncation bias3

 

.   Nonetheless, it is apparent from Table 5 

that these two apportioning schemes lead to different schedules of payments. It is also apparent that 

neither scheme is obviously more appropriate than the other.  

 

 

 

 

 
                                                 
3 The truncation bias could be removed by computing a running Shapley value using a moving 200 year window.  
For initial periods, however the differences are slight. At 2.5% discount, the present value of a dollar in 2205 is 
$0.007. 
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Table 5:  Initially High / Low values for Min Cost risk compliant path,[$/tC] 

Min Cost risk compliant 

emissions 

  Discount rate 2.5% 

  

Initially 
High 

Initially 
Low 

2015 121 108 

2025 122 113 

2035 122 117 

2045 123 122 

2055 125 127 

2065 129 134 

2075 135 140 

2085 115 119 

2095 96 98 

2105 79 80 

2115 64 64 

2125 50 50 

2135 39 38 

2145 29 29 

2155 21 21 

2165 15 14 

2175 9 9 

2185 5 5 

2195 2 2 

2205 1 1 

 

 

 

For a given risk-compliant emissions path, each approach assigns a share of the insurance price to 

each period based on its position in a unique sequence (coalition) of decisions by other periods, but the 

choice among sequences is arbitrary. In fact this is one in a class of “n-person” problems.  Given a set of 

axioms proposed by Shapley (1953), there is a unique solution to the cost allocation problem which is 

found by calculating the average marginal contribution of each period to every possible coalition.  
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Notionally, one can think of this as a measure of the share of responsibility that accrues to each period for 

the damages caused by the BAU, over and above the risk-compliant path.  

 

 Let π ∈ n! be a permutation of (1,…n). π(1) is the first element under π.  The damage allotted to 

period i emissions, under permutation π is: 

 

Dρ(eπ(1),..eπ(i‒1), eπ(i), rπ(i+1),…rπ(n)) ‒ Dρ(eπ(1),..eπ(i‒1), rπ(i), rπ(i+1),…rπ(n)).                     (6) 

 

We may write this as 

 

Dρ(Eπ(1)…π(i−1), eπ(i), Rπ(i+1)…π(n))  − Dρ(Eπ(1)…π(i−1), rπ(i), Rπ(i+1)…π(n))                                    (7) 

 

Averaging the damage allotment for period i over all permutations gives the intended minimum bound 

payment for period i. This may be seen as the Shapley value for period i in a damage allocation 

cooperative game: The value of (7) does not depend on the order of the elements π(1),…π(i‒1), nor on 

the order of the elements π(i+1),…π(n). Any reordering of these two subsets would produce the same 

value in (7) . We therefore define the value v(π(1),…π(i‒1)) of the “coalition” {π(1),…π(i‒1)} as the 

value  Dρ(eηπ(1),..eηπ(i‒1), rπ(i), rνπ(i+1),…rνπ(n)), for any permutation η of Eπ(1)…π(i−1), and any permutation ν of 

Rπ(i+1)…π(n). The Shapley value for period i is then: 

 

(1/n!) ∑ π∈n! Dρ(eπ(1),..eπ(i‒1), eπ(i), rπ(i+1),…rπ(n)) ‒ Dρ(eπ(1),..eπ(i‒1), rπ(i), rπ(i+1),…rπ(n)) 

 

= (1/2n‒1) ∑ S ⊂ {1,…n}\ i  v(S ∪ i) ‒ v(S).                                                    (8) 

 

It follows immediately from (8) that if eπ(i) = rπ(i), then the differences in damages in (6) are zero, 

for any permutation  π. 

 

The Shapley value for period i has the virtue that it does not depend on which other periods 

followed the BAU emissions. This virtue could also be seen as a weakness, as some of the coalitions to 

which i contributes damages may be judged very unlikely. For example, it may be judged that the 

emission scheme (e1 r2, e3, r4,…) is quite implausible, and that the contribution [Dρ( e1 r2, e3, r4,…) − Dρ( 

r1 r2, e3, r4,…)] is, therefore, less important to the assessment of period 1’s portion of the total cost. On the 

other hand, without a clear criterion for choosing preferred orderings, there is no alternative to the order 
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invariant solution (8).  Moreover, these are not real coalitions but virtual coalitions used in determining a 

cost allocation. 

 

5.  Shapley Values and Marginal Damages under Uncertainty 

 

The values in Tables 5 are based on the nominal values of the uncertain climate sensitivity, and 

later years are affected by a truncation bias.  In a rigorous study, a joint distribution would be assigned to 

all uncertain variables based on structured expert judgment. A structured expert judgment exercise has 

never been performed on such climate models. Failing that, we apply the distribution on climate 

sensitivity discussed in Section 3. Distributions for the lower bound on WTP in each period and for each 

discount rate are built up by sampling a climate sensitivity and a random permutation. In light of the 

truncation bias, Table 6 shows the means and standard deviations only for the first 3 periods. Values are 

given as $/GtC and $/GtCO2. These results are dependent on the abatement cost function. Table 7 shows 

results using an exponential abatement cost function. For low discount rates the values are rather close, 

but for high discount rates, emissions reductions are moved more into the future resulting in lower initial 

values and higher values further out. 

 

Table 6: Means and standard deviations of insurance price with quadratic abatement costs for 

three discount rates and three periods, in 2008 USD, uncertain climate sensitivity. 

Insurance Lower Bound Insurance Price, quadratic abatement cost function 

    2008$/GtC 2008$/GtCO2 

    Discount rate Discount rate 

    0.025 0.03 0.05 0.025 0.03 0.05 

2015 mean 106 64 12 29 17 3 

  stdev 47 26 4 13 7 1 

2025 mean 109 67 14 30 18 4 

  stdev 47 27 5 13 7 1 

2035 mean 111 70 16 30 19 4 

  stdev 47 28 5 13 8 1 
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Table 7:   Means and standard deviations of insurance price with exponential abatement costs for 

three discount rates and three periods, in 2008 USD, uncertain climate sensitivity. 
 

Insurance Price lower bound, exponential cost 
abatement, 2008$/GtC 

    0.025 0.030 0.050 

2015 
mean 92 2 0 

stdev 40 1 0 

2025 
mean 117 96 72 

stdev 50 39 9 

2035 
mean 129 109 24 

stdev 54 44 8 

 

 

If we are on a risk compliant emissions path, there is no WTP to reduce risk since society is 

already on a risk-constrained path.  There will, however, still be marginal damages of carbon emissions 

on this path. Table 8 shows these marginal damages for the min cost paths for each discount rate, for 

quadratic abatement costs. 

  

Table 8: Means and standard deviations of marginal damages along risk compliant path with 

quadratic cost abatement, for three discount rates and three periods, uncertain climate sensitivity 

Marginal damages, quadratic abatement cost function 

    2008$/GtC 2008$/GtCO2 

    Discount rate Discount rate 

    0.025 0.03 0.05 0.025 0.03 0.05 

2015 mean 248 177 64 68 48 17 

  stdev 112 75 21 31 21 6 

2025 mean 233 163 52 64 44 14 

  stdev 104 68 17 28 19 5 

2035 mean 216 146 41 59 40 11 

  stdev 96 61 14 26 17 4 

 

 

The sum of the lower bound on WTP and the SCC of the risk-constrained path are compared with the 

marginal damages along the BAU in Table 9.  The marginal damages of the BAU are about are from 12% 
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to 28% smaller than the sum of the lower bound payment and the marginal damages in the risk compliant 

scenarios. The differences decrease in the discount rate and increase with time.  Both the lower bound on 

WTP and the marginal damages are computed as a dollar per ton of carbon in various time periods.  

However, the two values differ in significant ways.  Unlike the marginal damages, the lower bound on 

WTP involves comparison between the BAU and a risk compliant emissions path which expresses 

society’s desire to avoid risks. If the BAU were already a risk compliant path, then the lower bound on 

WTP would be zero, while the marginal damages would still be positive. On the other hand, as the 

damages from the BAU go up, so does the WTP,  since meeting the risk constraint now requires greater  

damage reductions. 

 

Table 9: Total costs of risk compliant path with quadratic loss and marginal damages of BAU for 

three discount rates, in GtC and GtCO2 

    2008$/GtC 2008$/GtCO2 

    discount rate discount rate 

Total Risk 

compliant 0.025 0.03 0.05 0.025 0.03 0.05 

2015 Mean 354 241 76 96 66 21 

2025 Mean 342 229 66 93 63 18 

2035 Mean 328 217 56 89 59 15 

  

BAU Marginal   

2015 Mean 276 196 69 75 53 19 

2025 Mean 256 177 55 70 48 15 

2035 Mean 232 157 43 63 43 12 

 

 

 

6.  Conclusions 

 

Society’s risk aversion is inferred from international agreements which, in effect, stipulate a risk 

constraint:  the probability of raising global mean temperatures by more than 2°C in 200 years should not 

exceed 19% (Anderson and Bows 2011).  A lower bound on a virtual climate risk insurance price is a 

lower bound on our willingness to pay for a virtual insurance policy that swaps our BAU climate risk for 
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one that complies with this risk constraint. Computing this value requires a quantification of uncertainty 

for climate parameters. The optimal risk compliant emissions path is computed by minimizing a quadratic 

abatement cost function under a probabilistic constraint. Other abatement cost functions could be used, or 

indeed the optimal risk compliant path could be chosen in a heuristic manner without making abatement 

cost assumptions explicit. If the current BAU path had complied with the risk constraint, the risk 

premium would be zero, and it increases as the distance between the BAU and risk compliant path 

increases.  The optimal risk compliant emissions path still incurs marginal damages of carbon emissions. 

The sum of the marginal damages along the optimal risk compliant path and the virtual insurance 

premium we should pay for the risk swap are between 10% and 30% higher than the marginal damages 

along the BAU.  The Shapley value is used to apportion the total insurance price over the emitters in the 

various periods.  

 

These calculations are primarily intended to illustrate an accounting method that prices risk. They are 

limited by the restricted uncertainty quantification used to find an optimal risk compliant path, and by the 

limited cost abatement function. They are also conditioned on the climate and damage modeling in 

DICE2009.  
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