35 research outputs found

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 10−1510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    Circulant Arrays on Cyclic Subgroups of Finite Fields: Rank Analysis and Construction of Quasi-Cyclic LDPC Codes

    Full text link
    This paper consists of three parts. The first part presents a large class of new binary quasi-cyclic (QC)-LDPC codes with girth of at least 6 whose parity-check matrices are constructed based on cyclic subgroups of finite fields. Experimental results show that the codes constructed perform well over the binary-input AWGN channel with iterative decoding using the sum-product algorithm (SPA). The second part analyzes the ranks of the parity-check matrices of codes constructed based on finite fields with characteristic of 2 and gives combinatorial expressions for these ranks. The third part identifies a subclass of constructed QC-LDPC codes that have large minimum distances. Decoding of codes in this subclass with the SPA converges very fast.Comment: 26 pages, 6 figures, submitted to IEEE Transaction on Communication

    Decomposition Methods for Large Scale LP Decoding

    Full text link
    When binary linear error-correcting codes are used over symmetric channels, a relaxed version of the maximum likelihood decoding problem can be stated as a linear program (LP). This LP decoder can be used to decode error-correcting codes at bit-error-rates comparable to state-of-the-art belief propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP decoding when implemented with standard LP solvers does not easily scale to the block lengths of modern error correcting codes. In this paper we draw on decomposition methods from optimization theory, specifically the Alternating Directions Method of Multipliers (ADMM), to develop efficient distributed algorithms for LP decoding. The key enabling technical result is a "two-slice" characterization of the geometry of the parity polytope, which is the convex hull of all codewords of a single parity check code. This new characterization simplifies the representation of points in the polytope. Using this simplification, we develop an efficient algorithm for Euclidean norm projection onto the parity polytope. This projection is required by ADMM and allows us to use LP decoding, with all its theoretical guarantees, to decode large-scale error correcting codes efficiently. We present numerical results for LDPC codes of lengths more than 1000. The waterfall region of LP decoding is seen to initiate at a slightly higher signal-to-noise ratio than for sum-product BP, however an error floor is not observed for LP decoding, which is not the case for BP. Our implementation of LP decoding using ADMM executes as fast as our baseline sum-product BP decoder, is fully parallelizable, and can be seen to implement a type of message-passing with a particularly simple schedule.Comment: 35 pages, 11 figures. An early version of this work appeared at the 49th Annual Allerton Conference, September 2011. This version to appear in IEEE Transactions on Information Theor

    Novel Code-Construction for (3, k) Regular Low Density Parity Check Codes

    Get PDF
    Communication system links that do not have the ability to retransmit generally rely on forward error correction (FEC) techniques that make use of error correcting codes (ECC) to detect and correct errors caused by the noise in the channel. There are several ECC’s in the literature that are used for the purpose. Among them, the low density parity check (LDPC) codes have become quite popular owing to the fact that they exhibit performance that is closest to the Shannon’s limit. This thesis proposes a novel code-construction method for constructing not only (3, k) regular but also irregular LDPC codes. The choice of designing (3, k) regular LDPC codes is made because it has low decoding complexity and has a Hamming distance, at least, 4. In this work, the proposed code-construction consists of information submatrix (Hinf) and an almost lower triangular parity sub-matrix (Hpar). The core design of the proposed code-construction utilizes expanded deterministic base matrices in three stages. Deterministic base matrix of parity part starts with triple diagonal matrix while deterministic base matrix of information part utilizes matrix having all elements of ones. The proposed matrix H is designed to generate various code rates (R) by maintaining the number of rows in matrix H while only changing the number of columns in matrix Hinf. All the codes designed and presented in this thesis are having no rank-deficiency, no pre-processing step of encoding, no singular nature in parity part (Hpar), no girth of 4-cycles and low encoding complexity of the order of (N + g2) where g2«N. The proposed (3, k) regular codes are shown to achieve code performance below 1.44 dB from Shannon limit at bit error rate (BER) of 10 −6 when the code rate greater than R = 0.875. They have comparable BER and block error rate (BLER) performance with other techniques such as (3, k) regular quasi-cyclic (QC) and (3, k) regular random LDPC codes when code rates are at least R = 0.7. In addition, it is also shown that the proposed (3, 42) regular LDPC code performs as close as 0.97 dB from Shannon limit at BER 10 −6 with encoding complexity (1.0225 N), for R = 0.928 and N = 14364 – a result that no other published techniques can reach

    Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding for Ising MRF Models: Classical and Quantum Topology Machine Learning

    Full text link
    The paper introduces the application of information geometry to describe the ground states of Ising models by utilizing parity-check matrices of cyclic and quasi-cyclic codes on toric and spherical topologies. The approach establishes a connection between machine learning and error-correcting coding. This proposed approach has implications for the development of new embedding methods based on trapping sets. Statistical physics and number geometry applied for optimize error-correcting codes, leading to these embedding and sparse factorization methods. The paper establishes a direct connection between DNN architecture and error-correcting coding by demonstrating how state-of-the-art architectures (ChordMixer, Mega, Mega-chunk, CDIL, ...) from the long-range arena can be equivalent to of block and convolutional LDPC codes (Cage-graph, Repeat Accumulate). QC codes correspond to certain types of chemical elements, with the carbon element being represented by the mixed automorphism Shu-Lin-Fossorier QC-LDPC code. The connections between Belief Propagation and the Permanent, Bethe-Permanent, Nishimori Temperature, and Bethe-Hessian Matrix are elaborated upon in detail. The Quantum Approximate Optimization Algorithm (QAOA) used in the Sherrington-Kirkpatrick Ising model can be seen as analogous to the back-propagation loss function landscape in training DNNs. This similarity creates a comparable problem with TS pseudo-codeword, resembling the belief propagation method. Additionally, the layer depth in QAOA correlates to the number of decoding belief propagation iterations in the Wiberg decoding tree. Overall, this work has the potential to advance multiple fields, from Information Theory, DNN architecture design (sparse and structured prior graph topology), efficient hardware design for Quantum and Classical DPU/TPU (graph, quantize and shift register architect.) to Materials Science and beyond.Comment: 71 pages, 42 Figures, 1 Table, 1 Appendix. arXiv admin note: text overlap with arXiv:2109.08184 by other author
    corecore