122,179 research outputs found

    Coding limits on the number of transcription factors

    Get PDF
    Transcription factor proteins bind specific DNA sequences to control the expression of genes. They contain DNA binding domains which belong to several super-families, each with a specific mechanism of DNA binding. The total number of transcription factors encoded in a genome increases with the number of genes in the genome. Here, we examined the number of transcription factors from each super-family in diverse organisms. We find that the number of transcription factors from most super-families appears to be bounded. For example, the number of winged helix factors does not generally exceed 300, even in very large genomes. The magnitude of the maximal number of transcription factors from each super-family seems to correlate with the number of DNA bases effectively recognized by the binding mechanism of that super-family. Coding theory predicts that such upper bounds on the number of transcription factors should exist, in order to minimize cross-binding errors between transcription factors. This theory further predicts that factors with similar binding sequences should tend to have similar biological effect, so that errors based on mis-recognition are minimal. We present evidence that transcription factors with similar binding sequences tend to regulate genes with similar biological functions, supporting this prediction. The present study suggests limits on the transcription factor repertoire of cells, and suggests coding constraints that might apply more generally to the mapping between binding sites and biological function.Comment: http://www.weizmann.ac.il/complex/tlusty/papers/BMCGenomics2006.pdf https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1590034/ http://www.biomedcentral.com/1471-2164/7/23

    Invariance: a Theoretical Approach for Coding Sets of Words Modulo Literal (Anti)Morphisms

    Full text link
    Let AA be a finite or countable alphabet and let θ\theta be literal (anti)morphism onto AA^* (by definition, such a correspondence is determinated by a permutation of the alphabet). This paper deals with sets which are invariant under θ\theta (θ\theta-invariant for short).We establish an extension of the famous defect theorem. Moreover, we prove that for the so-called thin θ\theta-invariant codes, maximality and completeness are two equivalent notions. We prove that a similar property holds in the framework of some special families of θ\theta-invariant codes such as prefix (bifix) codes, codes with a finite deciphering delay, uniformly synchronized codes and circular codes. For a special class of involutive antimorphisms, we prove that any regular θ\theta-invariant code may be embedded into a complete one.Comment: To appear in Acts of WORDS 201

    Robust image and video coding with pyramid vector quantisation

    Get PDF
    corecore