25,687 research outputs found

    Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models

    Get PDF
    In survival analysis a large literature using frailty models, or models with unobserved heterogeneity, exist. In the growing literate on multiple spell multiple states duration models, or multistate models, modeling this issue is only at its infant phase. Ignoring unobserved heteogeneity can, however, produce incorrect results. This paper presents how unobserved heterogeneity can be incorporated into multistate models, with an emphasis on semi-Markov multistate models with a mixed proportional hazard structure. First, the aspects of frailty modeling in univariate (proportional hazard, Cox) duration models are addressed and some important models with unobserved heterogeneity are discussed. Second, the domain is extended to modeling of parallel/clustered multivariate duration data with unobserved heterogeneity. The implications of choosing shared or correlated unobserved heterogeneity is highlighted. The relevant differences with recurrent events data is covered next. They include the choice of the time scale and risk set which both have important implications for the way unobserved heterogeneity influence the model. Multistate duration models can have both parallel and recurrent events. Incorporating unobserved heterogeneity in multistate models, therefore, brings all the previously addressed issues together. Although some estimation procedures are covered the emphasis is on conceptual issues. The importance of including unobserved heterogeneity in multistate duration models is illustrated with data on labour market and migration dynamics of recent immigrants to The Netherlands.multiple spell multiple state duration, mixed proportional hazard, multistate model, unobserved heterogeneity, frailty

    Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

    Full text link
    Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. More recently, as deep learning models have become more common, RNNs have been used to forecast increasingly complicated systems. Dynamical spatio-temporal processes represent a class of complex systems that can potentially benefit from these types of models. Although the RNN literature is expansive and highly developed, uncertainty quantification is often ignored. Even when considered, the uncertainty is generally quantified without the use of a rigorous framework, such as a fully Bayesian setting. Here we attempt to quantify uncertainty in a more formal framework while maintaining the forecast accuracy that makes these models appealing, by presenting a Bayesian RNN model for nonlinear spatio-temporal forecasting. Additionally, we make simple modifications to the basic RNN to help accommodate the unique nature of nonlinear spatio-temporal data. The proposed model is applied to a Lorenz simulation and two real-world nonlinear spatio-temporal forecasting applications

    Neural Dynamics Underlying Impaired Autonomic and Conditioned Responses Following Amygdala and Orbitofrontal Lesions

    Full text link
    A neural model is presented that explains how outcome-specific learning modulates affect, decision-making and Pavlovian conditioned approach responses. The model addresses how brain regions responsible for affective learning and habit learning interact, and answers a central question: What are the relative contributions of the amygdala and orbitofrontal cortex to emotion and behavior? In the model, the amygdala calculates outcome value while the orbitofrontal cortex influences attention and conditioned responding by assigning value information to stimuli. Model simulations replicate autonomic, electrophysiological, and behavioral data associated with three tasks commonly used to assay these phenomena: Food consumption, Pavlovian conditioning, and visual discrimination. Interactions of the basal ganglia and amygdala with sensory and orbitofrontal cortices enable the model to replicate the complex pattern of spared and impaired behavioral and emotional capacities seen following lesions of the amygdala and orbitofrontal cortex.National Science Foundation (SBE-0354378; IIS-97-20333); Office of Naval Research (N00014-01-1-0624); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institutes of Health (R29-DC02952

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware

    Forecasting Player Behavioral Data and Simulating in-Game Events

    Full text link
    Understanding player behavior is fundamental in game data science. Video games evolve as players interact with the game, so being able to foresee player experience would help to ensure a successful game development. In particular, game developers need to evaluate beforehand the impact of in-game events. Simulation optimization of these events is crucial to increase player engagement and maximize monetization. We present an experimental analysis of several methods to forecast game-related variables, with two main aims: to obtain accurate predictions of in-app purchases and playtime in an operational production environment, and to perform simulations of in-game events in order to maximize sales and playtime. Our ultimate purpose is to take a step towards the data-driven development of games. The results suggest that, even though the performance of traditional approaches such as ARIMA is still better, the outcomes of state-of-the-art techniques like deep learning are promising. Deep learning comes up as a well-suited general model that could be used to forecast a variety of time series with different dynamic behaviors
    • …
    corecore