152,016 research outputs found

    Bump extraction algorithm for variable amplitude fatigue loading

    Get PDF
    This paper presents the development of a fatigue mission synthesis algorithm, called Wavelet Bump Extraction (WBE), for summarising long records of fatigue road load data. This algorithm is used to extract fatigue damaging events or bumps in the record that cause the majority of the fatigue damage, whilst preserving the load cycle sequences. Bumps are identified from characteristic frequency bands in the load spectrum using the 12th order Daubechies wavelet. The bumps are combined to produce a mission signal which has equivalent signal statistics and fatigue damage to the original signal. The WBE accuracy has been evaluated by observing the cycle sequence effects of the bump loadings. The WBE was compared with the time domain fatigue data editing method, so that the effectiveness of WBE can be verified. Using WBE, a substantial compression of the load-time history could be achieved for the purpose of accelerated fatigue tests in the automotive industry

    Fatigue crack initiation and small crack growth in several airframe alloys

    Get PDF
    The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41, and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis

    Non-local energy based fatigue life calculation method under multiaxial variable amplitude loadings

    Get PDF
    Reliable design of industrial components against high cycle multiaxial fatigue requires a model capable of predicting both stress gradient and load type effects. Indeed, taking into account gradient effects is of prior importance for the applicability of fatigue models to real structures. In this paper, a fatigue life assessment method is proposed for proportional and non-proportional multiaxial variable amplitude loadings in the range 104 –107 cycles. This method derives from the fatigue criterion initially proposed by Palin-Luc and Lasserre (1998) [2] and revisited by Banvillet et al. (2003) [16] for multiaxial constant amplitude loading. The new proposal consists of a complete reformulation and extension of the previ- ously cited energy based fatigue strength criteria. It includes two major improvements of the existing criteria. The first one consists in a fatigue criterion for multiaxial variable amplitude loadings while only constant amplitude loadings were considered in the above cited works. The second one is an extension to an incremental fatigue life assessment method for proportional and non-proportional multiaxial variable amplitude loadings. No cycle counting technique is needed whatever the variable amplitude load- ings type considered (uniaxial or multiaxial). The predictions of the method for constant and variable amplitude multiaxial loadings are compared with experimental results on specimens from literature and from new experiments on a ferrito-perlitic steel. The above mentioned method has been implemented as a post-processor of a finite element software. An application to a railway wheel is finally presented.Thèse CIFRE avec la SNCF, contrat direct ARTS / SNC

    Effects of variable amplitude loading on fatigue life

    Get PDF
    This paper is a review of published research on variable amplitude loading of steels. The use of service spectra for different industrial sectors and specifically for offshore applications is first considered. Constant amplitude fatigue failure models are not representative for these applications. The JONSWAP spectrum shows potential to be used as service spectrum for offshore structures. Further investigation of variable amplitude fatigue is needed to get insight in the various phenomena linked to the variable amplitude. Observed trends in fatigue crack growth rate in variable amplitude fatigue tests on steels, such as the effects of overloads and underloads (occurring as single events, sequential events or block loadings), are discussed. Furthermore, suggestions of the underlying physical phenomena behind the load interaction effects due to variable amplitude loading are presented. It can be concluded that the plasticity induced crack closure mechanism is the most profound explanation for the acceleration effect in overloads and the retardation effect observed in underloads

    Strip yield modelling of fatigue crack under variable amplitude loading

    Get PDF
    The results from 'strip yield' approach of the FASTRAN type models of plasticity induced crack closure effects of fatigue cracks subjected to variable amplitude loadings are presented. The strip yield results are compared with authors' finite element (FE) and experimental results. It has been observed that the strip yield model is seen to be fundamentally limited by choice of alpha (constraint factor) and corresponding to treat baseline closure effects. Double overload closure behavior is functionally similar for both strip yield and FE models. Under multiple overloads, an important functional difference is seen between FE and strip yield models. This has been linked to the absence of in-plane constraint in the strip yield model, which is seen to have a distinct decreasing influence on on-going closure effects.Peer reviewedFinal Accepted Versio

    Retardation effects due to overloads in aluminium-alloy aeronautical components

    Get PDF
    Fatigue data are generally derived under constant-amplitude loading conditions, but aircraft components are subjected to variable-amplitude loading. Without interaction effects, caused by overloads and underloads intermingled in a loading sequence, it could be relatively easy to establish a crack growth curve by means of a cycle-by-cycle integration. However, load-spectrum effects largely complicate a crack growth under variable-amplitude cycling. In this paper, fatigue crack growth behaviour of aeronautical aluminium alloy 2024-T3 was studied. Effects of various loading conditions such as stress ratio and amplitude loadings were investigated. In particular, the effect of different overloads on the fatigue crack growth was simulated using Zencrack code. Preliminary analyses on Compact Tension (CT) specimens proved that the numerical results generated were in agreement with the results provided by an afgrow code for the same conditions. A case study was carried out on a helicopter component, undergoing repeated overloads, to compare numerical results obtained implementing yield zone models in Zencrack.N/

    Investigation of fatigue-crack growth under simple variable-amplitude loading

    Get PDF
    Fatigue-crack growth under simple variable amplitude loading in aluminum alloy

    Measurement and analysis of critical crack tip processes during fatigue crack growth

    Get PDF
    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied

    A comparison of fatigue lifetime prediction models applied to variable amplitude loading

    Get PDF
    The loads imposed on e.g. offshore structures can vary considerably with time. Lifetime prediction methodologies need to consider possible acceleration and retardation of the crack growth rate due to load sequences. Models based on a linear accumulation of damage will have a limited accuracy and are not considered as a valuable asset in lifetime prediction of structures subjected to variable amplitude loading. This necessitates more complex nonlinear damage evolution models that can be applied in a so-called cycle-by-cycle analysis. In this paper, a comparison is made between three cumulative damage models (Miner, modified Miner and weighted average) and two yield zone models (Wheeler and Willenborg). Experimental data of fatigue crack growth in offshore steel subjected to sequential loading is used as basis of the comparison. The modified Miner model is the most promising of the cumulative damage models but the determination of the parameter α requires laboratory tests. Evaluation of the effects of variation in the model input parameters on estimated lifetime reveals a large influence for the Miner and weighted average approaches
    corecore