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Abstract 
 

The results from ‘strip yield’ approach of the FASTRAN type models of plasticity induced crack closure effects of fatigue cracks sub-

jected to variable amplitude loadings are presented. The strip yield results are compared with authors’ finite element (FE) and experi-

mental results. It has been observed that the strip yield model is seen to be fundamentally limited by choice of α (constraint factor) and 

corresponding to treat baseline closure effects. Double overload closure behavior is functionally similar for both strip yield and FE mod-

els. Under multiple overloads, an important functional difference is seen between FE and strip yield models. This has been linked to the 

absence of in-plane constraint in the strip yield model, which is seen to have a distinct decreasing influence on on-going closure effects. 
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1 Introduction 

For many fatigue critical structural components, fa-

tigue crack propagation under real service conditions 

involves variable amplitude (VA) loading rather than 

constant cyclic load amplitudes. Irregularities in fatigue 

loading are well known to result in transient effects in 

crack growth [1-3]. An understanding of fatigue behav-

ior under VA load histories may of course then help in 

the design and safe operation of damage tolerant struc-

tural components. Numerous attempts have been made to 

understand fatigue behavior under simple single over-

load transients [2,4-10]. For an understanding on fatigue 

crack response during realistic service loads, the effects 

of periodic overloads (dual or multiple, isolated or 

block) have been investigated [3, 11-28]. When succes-

sive (or periodic) overloads are applied between periods 

of constant amplitude fatigue loading, there arises the 

potential for overload interaction.  [21], for example, 

observed an apparent dependence of interactions be-

tween repeated overloads on the interval between the 

overloads. Closely spaced overloads may of course ulti-

mately lead to acceleration rather than retardation of 

crack growth as crack acceleration at each overload may 

exceed the retardation in the subsequent baseline cycles. 

Conversely, in cases of infrequently applied overloads, 

interactions may of course be expected to become small. 

However, there may be a range of overload spacing for 

which retardation effects are reported to be enhanced [11, 

12, 15, 17, 18, 21, 24].  

While most studies made on reported periodic over-

loads are based on experimental approaches, a few finite 

element (FE) and analytical studies exist, particularly for 

plane stress situations, [10, 17, 20, 25, 29].  [20, 25] 

suggest an increase in crack closure levels with ongoing 

crack propagation, which then appears to stabilize to a 

‘plateau’ level. [17] studied deformation characteristics 

of periodic overloads and found that differential surface 

profiles (differences in crack surface displacements after 

and before overloads) increased with decreasing separa-

tion of overloads. It is appropriate to note that to the best 

of the authors’ knowledge only authors’ reports [10, 29] 

have been found on plane strain FE analyses subjected to 

periodic overloads with emphasis on the effect of over-

load spacing on closure levels. In the analytical front, 

several attempts have been reported to model PICC 

(plasticity induced crack closure) effects by modifying 

the established Dugdale strip yield model [30] to leave 

plastically deformed material in a propagating crack 

wake [31-33]. Such models are essentially applicable to 

plane stress analyses, without considering three-

dimensional constraint on closure behavior. An attempt  
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Fig. 1. Schematic illustration of the nomenclature adopted for repeated 
overloads analyses (single spike loading for single overload analyses). 

was made by [34] to study both plane stress and plane 

strain closure behavior using a similar modified Dugdale 

model, by introducing a ‘constraint factor’ (essentially a 

fitting parameter) on tensile yielding to account for such 

three-dimensional effects  (incorporated in their 

FASTRAN code [23]. Newman’s FASTRAN calculations 

have been implemented and additional modifications 

made to include roughness induced crack closure (RICC) 

effects by [35] and [36]: to differentiate Xu’s code from 

Newman’s original model, Xu’s code will be referred to 

as a ‘strip yield model’. In the first instance, this strip 

yield approach is used in the present analysis to study the 

effects of PICC on VA loadings. The analysis results are 

then compared with authors’ FE [10, 29] and experi-

mental [35] results, for comparable model parameters. 

The work at present only considers repetitive (identical) 

overloads, as illustrated in Fig. 1 where (as = overload 

spacing distance; and Ns = loading cycles separating 

overloads). Fig. 1 shows schematically the nomenclature 

adopted for periodic overloads analysis, where the base-

line stress intensity factor (SIF) range, K(BL) = Kmax – 

Kmin, Kmax and Kmin are the maximum and minimum SIF 

respectively, KOL is the overload  SIF; the percentage 

overload, %OL = ((KOL – Kmax)/ Kmax) 100%; the clo-

sure level, Kcl; the effective SIF range, K(eff) = Kmax – 

Kcl; the applied SIF range, K(app) = Kmax – Kmin; the load 

ratio, R = Kmin/Kmax; and the crack closure, Kcl/Kmax = 1-

(1-R)U (where U =  K(eff)/ K(app)). The strip yield, FE 

and experimental techniques used are briefly described 

below.  

 

2 Analysis procedures  

 Strip yield modelling 

In Newman’s models the plastic region near the crack 

tip and the residual plastic deformation region along the 

crack surfaces were considered to be composed of rigid-

perfectly plastic bar elements with a flow stress o
, 

which is the average between the yield stress 
)( y

 

and the ultimate tensile strength (UTS). When stress is 

applied, the bar elements are either intact (in the plastic 

zone) or broken (residual plastic deformation), with bro-

ken elements only being able to carry compressive loads  

 

Fig. 2a. Schematic diagram of the CCT specimen showing Dugdale 

type residual plastic deformations, identifying linear elastic region 
(Region A), plastic region ahead of the crack tip (Region B) and resid-

ual plastic deformation region along the crack surfaces (Region C) 

(after Newman, 1981 and Xu, 2001).  

 

Fig. 2b: Schematic diagram showing superposition of two elastic prob-
lems of a CCT specimen subjected to a) remote uniform tensile stress 

() and b) uniform stress (i) over a segment of the crack surface (after 

Newman, 1981 and Xu, 2001). 

(when they are in contact). Elements that are not in con-

tact do not affect the calculation of crack-surface dis-

placements. The crack opening stresses are computed 

numerically by solving the boundary value problem. A 

constraint factor, , is used to elevate the crack tip flow 

stress  o  to notionally account for the influence of 

stress state on plastic-zone size and crack-surface dis-

placements. For plane stress conditions   is equal to 

unity (original Dugdale model), but equal to 3 for simu-

lated plane strain conditions. Based on 3D FE analyses, 
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[37] found that the ‘global constraint factor’, g (defined 

as the ratio of average normal stress in the plastically 

deformed material to the flow stress) rapidly drops as K 

levels increase (plastic zone size increases) and ap-

proaches a value near the plane stress limit (~1.0). The 

performance of such models in practice is found to de-

pend on the correct estimation of , which in effect be-

comes a fitting parameter as explicit descriptions of 

mixed stress states and g are not available. Mathemati-

cal formulations of the strip yield model are given in 

detail elsewhere in the literature [34, 35]. The basic ap-

proach of strip yield model formulation is described be-

low. 

The strip yield model considers a CCP (center cracked 

plate) specimen subjected to uniform applied stress (Fig. 

2a). It is assumed that all plastic deformation is con-

tained within a thin strip along the crack line. Thus the 

specimen is composed of three regions:  

1. Region A: a linear elastic region containing a 

fictitious crack of length 2(ao + rp). This is    

2. Region B: a plastic region of length rp. ahead of 

the crack tip, and  

3. Region C: a residual plastic deformation region 

of length ao.  

The material within regions B and C is represented by 

a series of finite-width rigid-perfectly plastic bar ele-

ments with flow stress o. On applying a stress, these bar 

elements are either intact (in the plastic zone, region B) 

or broken (in the residual plastic deformation region, 

region C). Elements in region B can carry both tensile 

and compressive stresses, while the crack wake elements 

(in region C) in contact can only carry compressive 

stresses and yield at o. The plastic zone size and crack 

surface displacements are computed by superposition of 

two elastic problems, viz., a crack in a finite-width plate 

subjected to either:  

1. Remote uniform stress () or  

2. Uniform stress applied over a segment of the 

crack surface (see Fig. 2b).  

The crack opening stress (op) may be calculated ei-

ther from:  

1. Displacement analysis: by defining the applied 

stress required to fully open the crack surfaces 

to be op [23] or  

2. Contact stress analysis: the applied stress inten-

sity factor at op is equated to the stress intensi-

ty factor caused by the contact stresses at the 

minimum stress, min. [22, 33, 34, 38]. 

Regions B and C are modelled using a fixed number 

of elastic-perfectly plastic elements (100 is chosen), as 

shown schematically in Fig. 2a. 60 elements are used for 

region C and 40 elements for region B, the element  

Table 1: Alloy compositions (wt %) 

Aluminium alloy Cu Mg Mn Fe Si 

2024-T351 4.06 1.36 0.54 0.20 0.12 

2024A-T351 4.51 1.44 0.33 0.16 0.05 

 

Table 2: Material properties of the alloys 

Aluminium alloy σy (MPa) σUTS (MPa) Elongation (%) 

2024-T351 372 483 21.4 

2024A-T351 345 434 25.2 

 

widths being varied with their relative positions, with 

finer elements concentrated around the physical crack tip 

and behind the fictitious crack tip. Fixing the number of 

elements is expected to result in a more reliable and con-

sistent crack opening behavior, than the common prac-

tice of lumping elements [34] far away from the crack tip 

into a single element. Although computing time may be 

reduced in the lumping procedure, sharp changes in the 

crack opening loads at certain distance are sometimes 

reported [23].  The initial length of the 40 bar elements 

in region B is based on the opening displacements of the 

fictitious crack surfaces at the peak load of the first cycle, 

while the length of the 60 bar elements in region C is 

initially set to zero and continually updated with crack 

growth.  

 

 Model geometry and material properties 

A conventional rectangular center-cracked plate 

(CCP) subjected to far field tension has been considered 

for the present analyses, with the dimensions being, 

length, L

 = 250.0 mm, width, W


 = 75 mm, thickness (B) 

of 12 mm and half initial crack length, 0.8oa mm [10, 

29, 36].  The material properties chosen are typical of 

damage tolerant aerospace aluminium alloys, e.g., AA 

2024-T351 and 2024A-T351, corresponding to Young’s 

modulus, E = 74 GPa, Poisson’s ratio,  = 0.33.  Yield 

stress (y ) and ultimate tensile strength (UTS ) along 

with chemical compositions of AA 2024-T351 and 

2024A-T351 are shown in Tables 1 and 2 [36, 39]. 

 

 FE modelling 

Essentially equivalent procedures of FE modelling 

from [9, 10, 29, 40, 41] are followed for modelling fa-

tigue crack growth under variable amplitude loading 

conditions. In addition to the material properties men-

tioned above, hardening modulus (bilinear model), H = 

0.07 E is adopted [9, 42]. [9] reported only a slight in-

crease in closure levels with decreasing hardening modu-

lus (from 0.07E to 0.035E), consistent with the  
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Fig. 2c. i) Typical finite element mesh of one half of the CCP specimen 
used for the analysis (~ 4000 four noded isoparametric quadrilateral 

elements) and ii) a close-up mesh along the crack propagation direction. 

 

observed lower crack opening associated with lower 

hardening modulus. 

Due to symmetry, only one-quarter of the panel is 

modelled (Fig. 2c). A typical FE mesh consisted of 

~3700 four-noded quadrilateral isoparametric elements. 

Selective reduced integration is used to prevent mesh-

locking and to provide an accurate solution for incom-

pressible material behavior [43]. As the accuracy of 

near-tip zone modelling is governed by the local element 

size [44] no appreciable gain in accuracy is expected 

with the use of higher order elements, such as eight-

noded quadrilaterals. Moreover, the use of higher order 

elements would be computationally expensive. No spe-

cial crack-tip elements were employed, as the nature of 

the near-tip field singularity at the tip of a propagating 

fatigue crack with closure is not well understood [42, 45, 

46]. While singular elements for ductile fracture prob-

lems are reported to predict stresses which are too large 

and strains which are too small [47], some researchers 

[48-50] have attempted to capture near-tip field using 

special singular elements; however, this approach is in-

appropriate as the closure phenomenon itself changes the 

form of crack-tip field [51]. The requirement for crack 

propagation with retention of prior deformation further 

constrains the choice of crack tip elements in this work. 

A typical crack tip element size (Le) along the propaga-

tion path was set at 2 m, which is approximately one-

thirteenth of the plane strain plastic zone size investigat-

ed (for K = 12 MPa m
2/1

and R = 0.1) as given by [52], 

thus satisfying the criterion suggested by [44], in keep-

ing with the analyses reported by [9]. The crack propaga-

tion algorithms considered here employed the ‘spring’ 

type boundary conditions following those of [9, 40, 44, 

53, 54]. Opposite nodes along the planned crack propa-

gation path are initially held by two very short linear 

spring elements. The first spring has a very high stiffness 

in tension and no stiffness in compression, while the 

second has very high stiffness in compression and no 

stiffness in tension. The compressive spring stiffness acts 

normal to the crack face, preventing interpenetration 

without affecting the shear displacement of the crack 

faces. Spring stiffness (ks) values of 7.4 x  10
8
 N/m 

were previously investigated to be sufficiently high to 

give consistent reasonable crack behavior [9]. Cracks 

were allowed to propagate one element at a time by re-

leasing the tension spring at maximum load. Crack clo-

sure (Kcl/Kmax) levels were assessed by monitoring the 

forces in the compression springs in the crack wake. De-

tails of this FE process are given in [29].  In the first 

instance the analyses were performed for K(BL) = 12.0 

MPa m
1/2

 , R = 0.1, and %OL = 50, 75 and 100 (but iden-

tical for each OL).  Overload spacing ranged from 

0.136 rp(BL) to 25.97 rp(BL). Results are presented for sin-

gle overload first, and subsequently for dual and multiple 

overloads.  

 

 Crack closure experiments 

Center-crack tension (CCT) specimens were tested at 

a stress ratio (R) of 0.1. Side-grooved specimens (corre-

sponding to a reduction in section of 20%, with an inter-

nal angle of 30°) were used to evaluate stress state ef-

fects on crack closure measurements. Stress intensity 

factors in side-grooved samples were obtained using the 

multiplicative factor (B/Bn)
1/2

 on the K values for a non-

side grooved sample of thickness of B, where B and Bn 

are the gross thickness and net thickness after side-

grooving, respectively [55]. The alignment of the speci-

mens was carefully checked and adjusted for all tests 

with four strain gauges on the specimen surfaces. Con-

ventional load shedding was used to obtain baseline 

da/dN~ ΔK curves. The potential drop (PD) technique 

was used to monitor crack length and control the fatigue 

tests automatically.  

To obtain detailed crack closure information, a crack 

mouth clip gauge was used to obtain conventional com-

pliance curves (and thus ‘global’ closure information), 

along with arrays of near-tip strain gauges with a spacing 

of 2 mm (along the crack growth direction) to obtain  
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Fig. 3. Comparison of FE and strip yield results for single overloads in 

terms of closure effects, K(BL) = 12.0 MPa m1/2, R = 0.1, %OL = 100. 

local crack closure levels. A gap of 1 mm was set be-

tween the edge of the strain gauges and the crack plane 

to avoid the influence of plastic deformation. Gauge po-

sition effects ahead of and behind the crack tip (along the 

crack growth direction) were studied by sampling sever-

al strain gauges simultaneously. Based on compliance 

curves obtained from crack mouth clip gauges and near-

tip strain gauges, a systematic assessment of closure 

measurements was made by a variety of non-subjective 

methods. Curve fitting methods based on a combination 

of linear and quadratic functions were used to get closure 

measurements [35, 36, 39]. 

3 Results and discussion 

3.1 Single overloads 

3.1.1 Crack closure comparison 

 Effect of constraint factor,  

Fig. 3 shows an example comparison of closure varia-

tion between strip yield r and FE results for K(BL) = 12.0 

MPa m
1/2

, R = 0.1, %OL = 100. Strip yield results are 

plotted for different values of  (= 1.9, 2.5 and 3.0). 

There is an increase in closure levels both in pre-

overload (i.e., constant amplitude conditions) and post-

overload transient, with increasing . An  value of 2.5 

predicts a peak-overload transient close to the FE value, 

although a shorter transient is obtained (i.e., it returns to 

the baseline closure levels more rapidly). Hence, for all 

the comparison with FE results an  value of 2.5 is used. 

 Effect of overload ratio (%OL) 

The response to the %OL variation for both strip yield 

and FE models is shown in Fig. 4 (K(BL) = 12.0 MPa 

m
1/2

, R = 0.1,  = 2.5). Both models can predict close 

agreement of the peak-closure transients for 100% OL; 

however, the FE modelling is seen to be rather more 

sensitive to overload level, particularly in terms of the 

lowest %OL shown in Fig. 4.  

 

Fig. 4. Comparison of FE and strip yield closure level variation, K(BL) 

= 12.0 MPa m1/2, R = 0.1,  =2.5. 

 

Fig. 5. Comparison of strip yield and experimental closure results, 

K(BL) = 12.0 MPa m1/2, R = 0.1, %OL =100. 

It may be seen that by manipulation of the  parame-

ter some control over the qualitative agreement of the 

models is achieved, although it is evident that the details 

of the post overload transient shape cannot be ‘resolved’: 

e.g., equivalent transient peak levels may be achieved for 

one  value, while a more comparable transient length 

may require higher . Overall, it both (strip yield and 

FE) modelling methods are of course only approxima-

tions of the processes that may occur in reality, particu-

larly for the strip yield approach, where the formulation 

is fundamentally for plane stress deformation conditions. 

Further consideration of the validity and choice of mod-

elling approach, and associated fitting parameters (such 

as ), is considered in relation to experimental crack 

closure data below 

 Experimental and strip yield modelling results 

Comparison of strip yield and experimental closure 

levels is shown in Fig. 5 (K(BL) = 12.0 MPa m
1/2

, R = 

0.1, %OL =100). With an   value of 1.9 (which is  
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Fig. 6. Intrinsic crack growth behaviour and their approximations 

through curve fitting, R = 0.1. 

 

Fig. 7. Comparison of normalised experimental (Xu, 2001) and pre-

dicted growth rates ((da/dN)/(da/dN)(BL)), K(BL) = 12.0 MPa m1/2, R = 
0.1, %OL = 100 

 

lower than that obtained for comparison with FE re-

sults), it can be seen that experimental peak overload 

closure levels are well predicted by the strip yield model.  

For subsequent comparison with experimental results, an 

 value of 1.9 has been adopted in the strip yield model.  

3.1.2 Growth rate comparisons (da/dN) 

Having identified the possibility of modelling over-

load transients purely in PICC terms, it is clearly valua-

ble to consider the accuracy of the predictions against a 

range of loading conditions. In this respect the results of 

[35] are again of interest in providing post-overload 

crack growth rates for 12.0 MPa m
1/2

, and %OL  of 50 

and 100: crack closure data for the lower K(BL) 

and %OL values were considered unreliable by Xu, 

however, as even near-tip compliance changes become 

hard to detect at lower load levels. Crack growth rates 

for these alternative load conditions are, however, avail-

able, and may of course be considered the more im-

portant parameter to predict than crack closure levels in 

themselves.  

 

Fig. 8. Comparison of experimental (Xu, 2001) and predicted growth 

rates (da/dN), K(BL) = 12.0 MPa m1/2, R = 0.1, %OL = 100. 

 

Fig. 9. Comparison of normalised experimental (Xu, 2001) and pre-

dicted growth rates ((da/dN)/(da/dN)(BL)), K(BL) = 12.0 MPa m1/2, R = 

0.1, %OL = 50. 

In the following sections, predicted growth rates from 

strip yield model and experiments will be shown. 

Growth rates (da/dN) are obtained from experimental 

da/dN  vs Keff curves as shown in Fig. 6, obtained un-

der constant amplitude loading conditions [35]. Growth 

rates corresponding to each material are approximated 

by fitting piecewise polynomial curves, as shown in Fig. 

6 (two polynomial curves are used for each material). 

Using the polynomial curves, predicted da/dN is ob-

tained using the overload model Keff   predictions.  

 K(BL) = 12.0 MPa m
1/2

, R = 0.1, %OL = 100 

Fig. 7 shows a comparison of strip yield normalized 

growth rate predictions with experimental results from  

[35] for K(BL) = 12.0 MPa m
1/2

, R = 0.1, %OL = 100. 

Strip yield and experimental results are plotted for both 

2024 and 2024A alloys. It can be seen in Fig. 7 that the 

strip yield models predict minimum growth rates of 

about 6% and 4% of the baseline growth rates for 2024 

and 2024A, respectively, which are clearly of the same  
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Fig. 10. Comparison of experimental (Xu, 2001) and predicted growth 

rates (da/dN), K(BL) = 12.0 MPa m1/2, R = 0.1, %OL = 50. 

 

Fig. 11. Effect of overload spacing on closure predicted by strip yield 

approach, K(BL) = 12 MPa m1/2,  R = 0.1. 

order as the experimental values. The affected distance is 

about 50% of the experimental results; however, con-

sistent with the relatively short closure transients associ-

ated with strip yield models as discussed previously. 

Such an underestimate of plane strain overload transient 

distances has been identified previously [35], with strip 

yield modelling being shown to give rather more accu-

rate descriptions of plane stress overload transient dis-

tances, consistent with the plane stress formulation.  

While normalized growth rate plots (as in Fig. 7) are 

clearly able to compare overload growth rates in relation 

to the baseline rates, it is possible that they may ‘hide’ 

differences in the actual growth rate. Fig. 8 shows the 

predicted growth rates of the strip yield models with 

experimental results from  [35]. Baseline growth rates 

predicted by strip yield models are slightly lower than 

the experimental results. Overall, however, for the condi-

tions shown, overload growth predicted by strip yield 

and analytical models appears to be of the correct order.  

 

Fig. 12. Variation of maximum closure levels with OL spacing for 

different OL ratios (K(BL) = 12 MPa m1/2,  R = 0.1). 

At this point it is valuable to recognize again the de-

gree of fitting involved in the strip yield method. The 

choice of  in Figs. 7 and 8 in the strip yield model is 

giving an acceptable approximation of baseline da/dN 

and peak overload transient effects for experiments that 

are designed (via sample side grooving in particular) to 

be plane strain dominated.  

 K(BL) = 12.0 MPa m
1/2

, R = 0.1, %OL = 50 

To assess the effect of lowering overload ratio to 50%, 

a comparison of normalized growth rates is shown in Fig. 

9. Experimental minimum growth rates for both alloys 

are approximately 50% of the baseline growth compared 

to the 100% OL case, consistent with the reduction in 

overload level. Predicted normalized minimum growth 

rates from both strip yield appear to agree well the ex-

perimental results, although the strip yield model shows 

shorter transients once more. Predicted and experimental 

growth rates are again plotted without normalization in 

Fig. 10. 

 

3.2 Double overloads 

3.2.1 Crack closure comparison 

Comparisons are made with FE results only due to the 

absence of comparable experimental data. 

 Crack closure – overload spacing effects 

Fig. 11 shows the variation of U plotted against nor-

malized crack length (a/rp(BL)) for K(BL) = 12 MPa m
1/2

, 
 

R = 0.1, %OL = 75. In this figure, plots corresponding to 

five overload spacings (as = 0.05, 0.22, 0.53, 0.89 and 

7.2 rp(OL)) are shown. The first overload is located at 

(a/rp(OL)) = 0.0. As in the FE results see [29] there is an 

increase in the maximum closure levels associated with 

the second overload being a short distance (~ 0.22 rp(OL)) 

from the first overload location. 

In Fig. 12, the maximum closure levels corresponding 

to the second overload ([Kcl/Kmax]DOL-max) are plotted  
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Fig. 13. Variation of SOL-max with OL spacing for different OL ratios 

(K(BL) = 12 MPa m1/2,  R = 0.1). 

for %OL = 50, 75 and 100 (K(BL) = 12 MPa m
1/2

, 
 
R = 

0.1) for both FE and strip yield models. [Kcl/Kmax]DOL-max 

is plotted against as/rp(OL). An increase in [Kcl/Kmax]DOL-

max values with increase in %OL is again seen. In contrast 

to the FE results which suggests an increasing zone of 

maximum retardation span with decreasing %OL, strip 

yield models predict a consistent maximum retardation 

point at approximately as = 0.29 rp(OL) for all the over-

loads modelled. Fig. 13 shows the variation of SOL-max 

(= [Kcl/Kmax]DOL-max / [Kcl/Kmax]SOL-max, i.e., ratio of maxi-

mum closure levels of double (DOL) and single (SOL) 

overloads) with as/rp(OL). It can be observed from Fig. 

13 that there is an increase of approximately 6%, 9.5% 

and 12.5% in the maximum closure levels when com-

pared to the single overload conditions (expressed in 

terms of SOL-max) for 50%, 75% and 100% OL respec-

tively, i.e., somewhat lower than the corresponding FE 

results but of a similar order. For the OLs considered, 

SOL-max drops to unity after at about 2 rp(OL--at the lower 

end of the range suggested by the FE models.  

The implication that the primary effect of a previous 

load transient on a subsequent load event may be ex-

pressed through the instantaneous crack closure levels 

(and the consequent influence on forward and reverse 

deformation processes) is clearly of interest as this may 

provide a valuable simplification of any engineering 

design approach that may be developed. In the first in-

stance it is clearly valuable to further consider the cur-

rent modelling results in relation to available experi-

mental data. 

3.2.2 Growth rate interaction 

In the previous sections, closure response during dou-

ble overloads excursion has been studied using two  

numerical modelling approaches, FE and strip yield: 

however, to the best of authors’ knowledge, correspond-

ing experimental closure studies have not been widely 

reported previously. Experimental work carried out by 

[12, 13] may, however, provide a valuable insight into 

the growth rate interaction of double overloads.  

 

Fig. 14. Predicted crack growth rate variations following 2 OLs , K(BL) 
= 12.0 MPa m1/2,  R = 0.1, %OL = 75 (strip yield method). 

 

The crack closure results from FE and strip yield type 

models have been used to predict crack growth rates 

using the method described in Section 3.1.2 (i.e., using 

previously determined da/dN Vs Keff curves  from 

constant amplitude tests). Predicted plane strain growth 

rates for single overload and double overloads are plot-

ted, K(BL) = 12.0 MPa m
1/2

, 
 
R = 0.1, %OL = 75, for 

strip yield methods in Fig. 14 (minor discontinuities in 

the predicted da/dN curves are due to the approximations 

in the curve fitting approach for da/dN vs Keff).  The 

minimum in 2
nd

 overload growth rates (and hence maxi-

mum interaction) occur when the two overloads are sep-

arated by amin (i.e., the amount of crack extension to 

reach the minimum growth rate during a single overload), 

consistent with the finding from Mills and Hertzberg. 

The predicted amin values are approximately 0.19 rp(OL) 

strip yield type (0.25 rp(OL) for FE models, See [10]. The 

incidence of the maximum double overload interaction 

effect occurring when the 2
nd

 overload is applied at the 

growth rate minimum of the first transient can of course 

be seen as simply consistent with the consideration of 

‘Reff’ (effective R, due to the influence of the residual 

deformation of the previous, i.e., 1
st
  overload) influ-

ences in the analytical [56] and FE [17] models. If clo-

sure is the controlling process in these transients, then 

the minimum da/dN point of the single overload will 

correspond to the maximum closure condition of the first 

overload. Any transient applied now will experience the 

least reversed plastic deformation during unloading and 

leave the largest residual lump in the crack wake.  

 

3.3 Multiple overloads 

Fig. 15 shows variations of U with normalized crack 

length (a/rp(OL)) for K(BL) = 12 MPa m
1/2

, 
 
R = 

0.1, %OL = 50, obtained from strip yield analysis. The 

first overload is located at a/rp(OL) = 0.0 and subsequent  
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Fig. 15. Typical closure variation of a crack subjected to periodic over-

loads, K(BL) = 12 MPa m1/2,  R = 0.1, %OL = 50 (Strip yield method). 

 

Figure 16: Variation of maximum closure envelope with OL spacing 

for different OL ratios, K(BL) = 12 MPa m1/2,  R = 0.1, %OL = 100 

(Strip yield method). 

periodic overloads are applied at a spacing, as = 0.233 

rp(OL). Increasing severity of peak closure levels can be 

observed for approximately 1.0 rp(OL) from the location of 

the first overload, after which ‘saturation’ appears to 

occur. In the first instance an envelope passing through 

maximum closure levels can be defined as a measure of 

closure severity as the crack propagates. The variation of 

maximum closure envelopes for %OL = 50, 75 and 100 

is plotted in Fig. 16 for equal overload spacing of as ~ 

0.22 rp(OL) in all the three cases. In Fig. 16 there is a rise 

in the maximum closure envelope as %OL increases; 

however, the envelopes appear to saturate (‘saturation 

effect’) at a = 1.0 rp(OL) in all three cases, suggesting 

that the saturation process is primarily controlled by 

overload deformation.. The present results agree qualita-

tively with the experimental findings of [28] on 2024 

aluminium alloy subjected to periodic overloads (vary-

ing %OL and Ns), where the authors reported a stabi 

 

Fig. 17. Typical closure variation of a crack subjected to periodic over-

loads, K(BL) = 12 MPa m1/2,  R = 0.1, %OL = 100 (FE method). 

 

Fig. 18. Variation of maximum closure envelope with OL spacing for 

different OL ratios, K(BL) = 12 MPa m1/2,  R = 0.1, %OL = 100 (FE 

method). 

 

lized value of crack opening loads as crack growth pro-

ceeds.  

Variation of U with crack length from FE analysis is 

plotted against normalized crack length, a/rp(OL), in Fig. 

17 for the conditions mentioned above. The initial varia-

tion of U with crack length is seen to follow the results 

from the strip yield models.  An increase of peak clo-

sure level is seen: this is, however, followed by a de-

crease to a lower saturation level (‘peak and saturation 

effect’). The presence of the ‘peak and saturation effect’ 

in the maximum closure envelope is not shown by the 

strip yield models (both approaches only show a ‘satura-

tion effect’). Fig. 18 shows the variation of maximum 

closure envelopes for %OL = 50, 75 and 100 (as ~ 0.3 

rp(OL)). A rising pattern of maximum closure levels is 

seen with increasing %OL, which is consistent with the 

findings from strip yield models. ‘Peak and saturation  
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Fig. 19. Typical closure variation of a crack subjected to periodic over-

loads, K(BL) = 12 MPa m1/2,  R = 0.1, %OL = 100, plane stress (FE 

method). 

effect’ on maximum closure envelope are, however, seen 

consistently for all %OLs. In all cases, the peak of the 

maximum closure levels appear to occur at about 1.0 

rp(OL) from the location of the first overload. 

The appearance of a ‘peak and saturation effect’ in the 

peak closure levels due to periodic overloads in plane 

strain may then be explained by understanding the mate-

rial movement during fatigue crack propagation. [29] 

notes that for constant amplitude plane strain conditions, 

material cannot move in the thickness direction and the 

discontinuous contact near the pre-crack tip results from 

the transverse (in plane) movement of material near the 

pre-crack tip (causing a transient lump). It may be noted 

that diminishing closure effects (approaching saturation) 

following peak closure levels may then arise from the 

requirement to keep the material moving forward, in 

plane. For subsequent overloads, it may intuitively be 

noted that having drawn material forward along the 

crack wake for one overload, a closely spaced additional 

overload will encounter increased resistance in drawing 

more material forward from the crack wake. This fol-

lows through to the logical ‘end point’ where the over-

load spacing becomes vanishingly small and growth is 

simply occurring at a consistent K(OL); for plane strain 

conditions results in chapter 3 indicate that closure levels 

must tend towards zero under sustained crack growth 

(after an initial transient at the undeformed pre-crack tip). 

The requirement for transverse movement of material 

does not arise for plane stress conditions (material 

movement occurs through thickness), and hence a ‘peak 

and saturation’ effect should not occur for plane stress 

cracks subjected to periodic overloads if the above ex-

planation is correct. Fig. 19 plots the variation of U with 

normalized crack length (a/rp(OL)), for sustained period-

ic overloads under plane stress conditions (K(BL) = 12 

MPa m
1/2

, 
 
R = 0.1, %OL = 100, ) as ~ 0.196 rp(OL)). A 

simple saturation of peak closure levels is seen, con-

sistent with proposed dependence of plane strain period-

ic transient behavior on transverse material movement. It 

may then be seen that the evolution of multiple transient 

effects in plane strain requires consideration of at least 

two phenomena: the ‘effective R-ratio’ influence of pre-

vious transient, and, increasing transverse constraint. 

These act in opposing senses in terms of the severity of 

ongoing closure transients. The absence of ‘peak + satu-

ration’ effect in the strip yield modelling may also be 

seen as entirely consistent with the model’s fundamental 

plane stress character, where in-plane constraint effects 

must be minimal. 

 

4 Conclusions  

Variable amplitude fatigue crack propagation has been 

studied for single, double and multiple overload transi-

ents using the popular ‘strip yield’ (FASTRAN type) 

approach, with comparisons with recently published fi-

nite element and experimental results. The results are 

summarised below.  

 

1. Double overload closure behavior is functionally 

similar for the two modelling (i.e. finite element and 

strip yield models) approaches used. 

2. The strip yield type approach is seen to be funda-

mentally limited by choice of  and corresponding 

ability to treat baseline closure effects. 

3. Plasticity induced crack closure can be used to ex-

plain much of the OL transient behavior investigated 

experimentally. 

4. Under repeated overloads, an important functional 

difference is seen between FE and the analytical and 

strip yield models. This has been linked to the ab-

sence of in-plane constraint in the strip yield model, 

which is seen to have a distinct decreasing influence 

on on-going closure effects. 
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