2 research outputs found

    Variable Projection Applied to Block Term Decomposition of Higher-Order Tensors

    No full text
    Higher-order tensors have become popular in many areas of applied mathematics such as statistics, scientific computing, signal processing or machine learning, notably thanks to the many possible ways of decomposing a tensor. In this paper, we focus on the best approximation in the least-squares sense of a higher-order tensor by a block term decomposition. Using variable projection, we express the tensor approximation problem as a minimization of a cost function on a Cartesian product of Stiefel manifolds. The effect of variable projection on the Riemannian gradient algorithm is studied through numerical experiments

    Variable Projection Applied to Block Term Decomposition of Higher-Order Tensors

    No full text
    © Springer International Publishing AG, part of Springer Nature 2018. Higher-order tensors have become popular in many areas of applied mathematics such as statistics, scientific computing, signal processing or machine learning, notably thanks to the many possible ways of decomposing a tensor. In this paper, we focus on the best approximation in the least-squares sense of a higher-order tensor by a block term decomposition. Using variable projection, we express the tensor approximation problem as a minimization of a cost function on a Cartesian product of Stiefel manifolds. The effect of variable projection on the Riemannian gradient algorithm is studied through numerical experiments.status: publishe
    corecore