30 research outputs found

    VLSI Circuits for Approximate Computing

    Get PDF
    Approximate Computing has recently emerged as a promising solution to enhance circuits performance by relaxing the requisite on exact calculations. Multimedia and Machine Learning constitute a typical example of error resilient, albeit compute-intensive, applications. In this dissertation, the design and optimization of approximate fundamental VLSI digital blocks is investigated. In chapter one the theoretical motivations of Approximate Computing, from the VLSI perspective, are discussed. In chapter two my research activity about approximate adders is reported. In this chapter approximate adders for both traditional non-error tolerant applications and error resilient applications are discussed. In chapter three precision-scalable units are investigated. Real-time precision scalability allows adapting the precision level of the unit with the precision requirements of the applications. In this context my research activities regarding approximate Multiply-and-Accumulate and memory units are described. In chapter four a precision-scalable approximate convolver for computer vision applications is discussed. This is composed of both the approximate Multiply-and-Accumulate and memory units, presented in the chapter three

    DESIGN OF ON-LINE DECIMAL MULTIPLIER

    Get PDF

    DESIGN OF ON-LINE DECIMAL MULTIPLIER

    Get PDF

    A Solder-Defined Computer Architecture for Backdoor and Malware Resistance

    Get PDF
    This research is about securing control of those devices we most depend on for integrity and confidentiality. An emerging concern is that complex integrated circuits may be subject to exploitable defects or backdoors, and measures for inspection and audit of these chips are neither supported nor scalable. One approach for providing a “supply chain firewall” may be to forgo such components, and instead to build central processing units (CPUs) and other complex logic from simple, generic parts. This work investigates the capability and speed ceiling when open-source hardware methodologies are fused with maker-scale assembly tools and visible-scale final inspection. The author has designed, and demonstrated in simulation, a 36-bit CPU and protected memory subsystem that use only synchronous static random access memory (SRAM) and trivial glue logic integrated circuits as components. The design presently lacks preemptive multitasking, ability to load firmware into the SRAMs used as logic elements, and input/output. Strategies are presented for adding these missing subsystems, again using only SRAM and trivial glue logic. A load-store architecture is employed with four clock cycles per instruction. Simulations indicate that a clock speed of at least 64 MHz is probable, corresponding to 16 million instructions per second (16 MIPS), despite the architecture containing no microprocessors, field programmable gate arrays, programmable logic devices, application specific integrated circuits, or other purchased complex logic. The lower speed, larger size, higher power consumption, and higher cost of an “SRAM minicomputer,” compared to traditional microcontrollers, may be offset by the fully open architecture—hardware and firmware—along with more rigorous user control, reliability, transparency, and auditability of the system. SRAM logic is also particularly well suited for building arithmetic logic units, and can implement complex operations such as population count, a hash function for associative arrays, or a pseudorandom number generator with good statistical properties in as few as eight clock cycles per 36-bit word processed. 36-bit unsigned multiplication can be implemented in software in 47 instructions or fewer (188 clock cycles). A general theory is developed for fast SRAM parallel multipliers should they be needed

    Design and implementation of a Multimedia Extension for a RISC Processor

    Get PDF
    Design and implementation of a Multimedia Extension for a RISC Processor in a FPG

    Toatie : functional hardware description with dependent types

    Get PDF
    Describing correct circuits remains a tall order, despite four decades of evolution in Hardware Description Languages (HDLs). Many enticing circuit architectures require recursive structures or complex compile-time computation — two patterns that prove difficult to capture in traditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) structure for efficient parallel filtering proves to be naturally recursive, and most Multiple Constant Multiplication (MCM) blocks decompose multiplications into graphs of simple shifts and adds using demanding compile time computation. Generalised versions of both remain mostly in academic folklore. The implementations which do exist are often ad hoc circuit generators, written in software languages. These pose challenges for verification and are resistant to composition. Embedded functional HDLs, that represent circuits as data, allow for these descriptions at the cost of forcing the designer to work at the gate-level. A promising alternative is to use a stand-alone compiler, representing circuits as plain functions, exemplified by the CλaSH HDL. This, however, raises new challenges in capturing a circuit’s staging — which expressions in the single language should be reduced during compile-time elaboration, and which should remain in the circuit’s run-time? To better reflect the physical separation between circuit phases, this work proposes a new functional HDL (representing circuits as functions) with first-class staging constructs. Orthogonal to this, there are also long-standing challenges in the verification of parameterised circuit families. Industry surveys have consistently reported that only a slim minority of FPGA projects reach production without non-trivial bugs. While a healthy growth in the adoption of automatic formal methods is also reported, the majority of testing remains dynamic — presenting difficulties for testing entire circuit families at once. This research offers an alternative verification methodology via the combination of dependent types and automatic synthesis of user-defined data types. Given precise enough types for synthesisable data, this environment can be used to develop circuit families with full functional verification in a correct-by-construction fashion. This approach allows for verification of entire circuit families (not just one concrete member) and side-steps the state-space explosion of model checking methods. Beyond the existing work, this research offers synthesis of combinatorial circuits — not just a software model of their behaviour. This additional step requires careful consideration of staging, erasure & irrelevance, deriving bit representations of user-defined data types, and a new synthesis scheme. This thesis contributes steps towards HDLs with sufficient expressivity for awkward, combinatorial signal processing structures, allowing for a correct-by-construction approach, and a prototype compiler for netlist synthesis.Describing correct circuits remains a tall order, despite four decades of evolution in Hardware Description Languages (HDLs). Many enticing circuit architectures require recursive structures or complex compile-time computation — two patterns that prove difficult to capture in traditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) structure for efficient parallel filtering proves to be naturally recursive, and most Multiple Constant Multiplication (MCM) blocks decompose multiplications into graphs of simple shifts and adds using demanding compile time computation. Generalised versions of both remain mostly in academic folklore. The implementations which do exist are often ad hoc circuit generators, written in software languages. These pose challenges for verification and are resistant to composition. Embedded functional HDLs, that represent circuits as data, allow for these descriptions at the cost of forcing the designer to work at the gate-level. A promising alternative is to use a stand-alone compiler, representing circuits as plain functions, exemplified by the CλaSH HDL. This, however, raises new challenges in capturing a circuit’s staging — which expressions in the single language should be reduced during compile-time elaboration, and which should remain in the circuit’s run-time? To better reflect the physical separation between circuit phases, this work proposes a new functional HDL (representing circuits as functions) with first-class staging constructs. Orthogonal to this, there are also long-standing challenges in the verification of parameterised circuit families. Industry surveys have consistently reported that only a slim minority of FPGA projects reach production without non-trivial bugs. While a healthy growth in the adoption of automatic formal methods is also reported, the majority of testing remains dynamic — presenting difficulties for testing entire circuit families at once. This research offers an alternative verification methodology via the combination of dependent types and automatic synthesis of user-defined data types. Given precise enough types for synthesisable data, this environment can be used to develop circuit families with full functional verification in a correct-by-construction fashion. This approach allows for verification of entire circuit families (not just one concrete member) and side-steps the state-space explosion of model checking methods. Beyond the existing work, this research offers synthesis of combinatorial circuits — not just a software model of their behaviour. This additional step requires careful consideration of staging, erasure & irrelevance, deriving bit representations of user-defined data types, and a new synthesis scheme. This thesis contributes steps towards HDLs with sufficient expressivity for awkward, combinatorial signal processing structures, allowing for a correct-by-construction approach, and a prototype compiler for netlist synthesis

    Superscalar RISC-V Processor with SIMD Vector Extension

    Get PDF
    With the increasing number of digital products in the market, the need for robust and highly configurable processors rises. The demand is convened by the stable and extensible open-sourced RISC-V instruction set architecture. RISC-V processors are becoming popular in many fields of applications and research. This thesis presents a dual-issue superscalar RISC-V processor design with dynamic execution. The proposed design employs the global sharing scheme for branch prediction and Tomasulo algorithm for out-of-order execution. The processor is capable of speculative execution with five checkpoints. Data flow in the instruction dispatch and commit stages is optimized to achieve higher instruction throughput. The superscalar processor is extended with a customized vector instruction set of single-instruction-multiple-data computations to specifically improve the performance on machine learning tasks. According to the definition of the proposed vector instruction set, the scratchpad memory and element-wise arithmetic units are implemented in the vector co-processor. Different test programs are evaluated on the fully-tested superscalar processor. Compared to the reference work, the proposed design improves 18.9% on average instruction throughput and 4.92% on average prediction hit rate, with 16.9% higher operating clock frequency synthesized on the Intel Arria 10 FPGA board. The forward propagation of a convolution neural network model is evaluated by the standalone superscalar processor and the integration of the vector co-processor. The vector program with software-level optimizations achieves 9.53× improvement on instruction throughput and 10.18× improvement on real-time throughput. Moreover, the integration also provides 2.22× energy efficiency compared with the superscalar processor along
    corecore