15 research outputs found

    Static correlation visualization for large time-varying volume data

    Full text link

    Multivariate Pointwise Information-Driven Data Sampling and Visualization

    Full text link
    With increasing computing capabilities of modern supercomputers, the size of the data generated from the scientific simulations is growing rapidly. As a result, application scientists need effective data summarization techniques that can reduce large-scale multivariate spatiotemporal data sets while preserving the important data properties so that the reduced data can answer domain-specific queries involving multiple variables with sufficient accuracy. While analyzing complex scientific events, domain experts often analyze and visualize two or more variables together to obtain a better understanding of the characteristics of the data features. Therefore, data summarization techniques are required to analyze multi-variable relationships in detail and then perform data reduction such that the important features involving multiple variables are preserved in the reduced data. To achieve this, in this work, we propose a data sub-sampling algorithm for performing statistical data summarization that leverages pointwise information theoretic measures to quantify the statistical association of data points considering multiple variables and generates a sub-sampled data that preserves the statistical association among multi-variables. Using such reduced sampled data, we show that multivariate feature query and analysis can be done effectively. The efficacy of the proposed multivariate association driven sampling algorithm is presented by applying it on several scientific data sets.Comment: 25 page

    Multivariate relationship specification and visualization

    Get PDF
    In this dissertation, we present a novel method for multivariate visualization that focuses on multivariate relationshipswithin scientific datasets. Specifically, we explore the considerations of such a problem, i.e. we develop an appropriate visualization approach, provide a framework for the specification of multivariate relationships and analyze the space of such relationships for the purpose of guiding the user toward desired visualizations. The visualization approach is derived from a point classification algorithm that summarizes many variables of a dataset into a single image via the creation of attribute subspaces. Then, we extend the notion of attribute subspaces to encompass multivariate relationships. In addition, we provide an unconstrained framework for the user to define such relationships. Althoughwe intend this approach to be generally applicable, the specification of complicated relationships is a daunting task due to the increasing difficulty for a user to understand and apply these relationships. For this reason, we explore this relationship space with a common information visualization technique well suited for this purpose, parallel coordinates. In manipulating this space, a user is able to discover and select both complex and logically informative relationship specifications

    Concept-driven visualization for terascale data analytics

    Get PDF
    Over the past couple of decades the amount of scientific data sets has exploded. The science community has since been facing the common problem of being drowned in data, and yet starved of information. Identification and extraction of meaningful features from large data sets has become one of the central problems of scientific research, for both simulation as well as sensory data sets. The problems at hand are multifold and need to be addressed concurrently to provide scientists with the necessary tools, methods, and systems. Firstly, the underlying data structures and management need to be optimized for the kind of data most commonly used in scientific research, i.e. terascale time-varying, multi-dimensional, multi-variate, and potentially non-uniform grids. This implies avoidance of data duplication, utilization of a transparent query structure, and use of sophisticated underlying data structures and algorithms.Secondly, in the case of scientific data sets, simplistic queries are not a sufficient method to describe subsets or features. For time-varying data sets, many features can generally be described as local events, i.e. spatially and temporally limited regions with characteristic properties in value space. While most often scientists know quite well what they are looking for in a data set, at times they cannot formally or definitively describe their concept well to computer science experts, especially when based on partially substantiated knowledge. Scientists need to be enabled to query and extract such features or events directly and without having to rewrite their hypothesis into an inadequately simple query language. Thirdly, tools to analyze the quality and sensitivity of these event queries itself are required. Understanding local data sensitivity is a necessity for enabling scientists to refine query parameters as needed to produce more meaningful findings.Query sensitivity analysis can also be utilized to establish trends for event-driven queries, i.e. how does the query sensitivity differ between locations and over a series of data sets. In this dissertation, we present an approach to apply these interdependent measures to aid scientists in better understanding their data sets. An integrated system containing all of the above tools and system parts is presented

    Doctor of Philosophy

    Get PDF
    dissertationCorrelation is a powerful relationship measure used in many fields to estimate trends and make forecasts. When the data are complex, large, and high dimensional, correlation identification is challenging. Several visualization methods have been proposed to solve these problems, but they all have limitations in accuracy, speed, or scalability. In this dissertation, we propose a methodology that provides new visual designs that show details when possible and aggregates when necessary, along with robust interactive mechanisms that together enable quick identification and investigation of meaningful relationships in large and high-dimensional data. We propose four techniques using this methodology. Depending on data size and dimensionality, the most appropriate visualization technique can be provided to optimize the analysis performance. First, to improve correlation identification tasks between two dimensions, we propose a new correlation task-specific visualization method called correlation coordinate plot (CCP). CCP transforms data into a powerful coordinate system for estimating the direction and strength of correlations among dimensions. Next, we propose three visualization designs to optimize correlation identification tasks in large and multidimensional data. The first is snowflake visualization (Snowflake), a focus+context layout for exploring all pairwise correlations. The next proposed design is a new interactive design for representing and exploring data relationships in parallel coordinate plots (PCPs) for large data, called data scalable parallel coordinate plots (DSPCP). Finally, we propose a novel technique for storing and accessing the multiway dependencies through visualization (MultiDepViz). We evaluate these approaches by using various use cases, compare them to prior work, and generate user studies to demonstrate how our proposed approaches help users explore correlation in large data efficiently. Our results confirmed that CCP/Snowflake, DSPCP, and MultiDepViz methods outperform some current visualization techniques such as scatterplots (SCPs), PCPs, SCP matrix, Corrgram, Angular Histogram, and UntangleMap in both accuracy and timing. Finally, these approaches are applied in real-world applications such as a debugging tool, large-scale code performance data, and large-scale climate data

    Visual Analysis of Variability and Features of Climate Simulation Ensembles

    Get PDF
    This PhD thesis is concerned with the visual analysis of time-dependent scalar field ensembles as occur in climate simulations. Modern climate projections consist of multiple simulation runs (ensemble members) that vary in parameter settings and/or initial values, which leads to variations in the resulting simulation data. The goal of ensemble simulations is to sample the space of possible futures under the given climate model and provide quantitative information about uncertainty in the results. The analysis of such data is challenging because apart from the spatiotemporal data, also variability has to be analyzed and communicated. This thesis presents novel techniques to analyze climate simulation ensembles visually. A central question is how the data can be aggregated under minimized information loss. To address this question, a key technique applied in several places in this work is clustering. The first part of the thesis addresses the challenge of finding clusters in the ensemble simulation data. Various distance metrics lend themselves for the comparison of scalar fields which are explored theoretically and practically. A visual analytics interface allows the user to interactively explore and compare multiple parameter settings for the clustering and investigate the resulting clusters, i.e. prototypical climate phenomena. A central contribution here is the development of design principles for analyzing variability in decadal climate simulations, which has lead to a visualization system centered around the new Clustering Timeline. This is a variant of a Sankey diagram that utilizes clustering results to communicate climatic states over time coupled with ensemble member agreement. It can reveal several interesting properties of the dataset, such as: into how many inherently similar groups the ensemble can be divided at any given time, whether the ensemble diverges in general, whether there are different phases in the time lapse, maybe periodicity, or outliers. The Clustering Timeline is also used to compare multiple climate simulation models and assess their performance. The Hierarchical Clustering Timeline is an advanced version of the above. It introduces the concept of a cluster hierarchy that may group the whole dataset down to the individual static scalar fields into clusters of various sizes and densities recording the nesting relationship between them. One more contribution of this work in terms of visualization research is, that ways are investigated how to practically utilize a hierarchical clustering of time-dependent scalar fields to analyze the data. To this end, a system of different views is proposed which are linked through various interaction possibilities. The main advantage of the system is that a dataset can now be inspected at an arbitrary level of detail without having to recompute a clustering with different parameters. Interesting branches of the simulation can be expanded to reveal smaller differences in critical clusters or folded to show only a coarse representation of the less interesting parts of the dataset. The last building block of the suit of visual analysis methods developed for this thesis aims at a robust, (largely) automatic detection and tracking of certain features in a scalar field ensemble. Techniques are presented that I found can identify and track super- and sub-levelsets. And I derive “centers of action” from these sets which mark the location of extremal climate phenomena that govern the weather (e.g. Icelandic Low and Azores High). The thesis also presents visual and quantitative techniques to evaluate the temporal change of the positions of these centers; such a displacement would be likely to manifest in changes in weather. In a preliminary analysis with my collaborators, we indeed observed changes in the loci of the centers of action in a simulation with increased greenhouse gas concentration as compared to pre-industrial concentration levels
    corecore