5 research outputs found

    EffiTest: Efficient Delay Test and Statistical Prediction for Configuring Post-silicon Tunable Buffers

    Full text link
    At nanometer manufacturing technology nodes, process variations significantly affect circuit performance. To combat them, post- silicon clock tuning buffers can be deployed to balance timing bud- gets of critical paths for each individual chip after manufacturing. The challenge of this method is that path delays should be mea- sured for each chip to configure the tuning buffers properly. Current methods for this delay measurement rely on path-wise frequency stepping. This strategy, however, requires too much time from ex- pensive testers. In this paper, we propose an efficient delay test framework (EffiTest) to solve the post-silicon testing problem by aligning path delays using the already-existing tuning buffers in the circuit. In addition, we only test representative paths and the delays of other paths are estimated by statistical delay prediction. Exper- imental results demonstrate that the proposed method can reduce the number of frequency stepping iterations by more than 94% with only a slight yield loss.Comment: ACM/IEEE Design Automation Conference (DAC), June 201

    Timing Closure in Chip Design

    Get PDF
    Achieving timing closure is a major challenge to the physical design of a computer chip. Its task is to find a physical realization fulfilling the speed specifications. In this thesis, we propose new algorithms for the key tasks of performance optimization, namely repeater tree construction; circuit sizing; clock skew scheduling; threshold voltage optimization and plane assignment. Furthermore, a new program flow for timing closure is developed that integrates these algorithms with placement and clocktree construction. For repeater tree construction a new algorithm for computing topologies, which are later filled with repeaters, is presented. To this end, we propose a new delay model for topologies that not only accounts for the path lengths, as existing approaches do, but also for the number of bifurcations on a path, which introduce extra capacitance and thereby delay. In the extreme cases of pure power optimization and pure delay optimization the optimum topologies regarding our delay model are minimum Steiner trees and alphabetic code trees with the shortest possible path lengths. We presented a new, extremely fast algorithm that scales seamlessly between the two opposite objectives. For special cases, we prove the optimality of our algorithm. The efficiency and effectiveness in practice is demonstrated by comprehensive experimental results. The task of circuit sizing is to assign millions of small elementary logic circuits to elements from a discrete set of logically equivalent, predefined physical layouts such that power consumption is minimized and all signal paths are sufficiently fast. In this thesis we develop a fast heuristic approach for global circuit sizing, followed by a local search into a local optimum. Our algorithms use, in contrast to existing approaches, the available discrete layout choices and accurate delay models with slew propagation. The global approach iteratively assigns slew targets to all source pins of the chip and chooses a discrete layout of minimum size preserving the slew targets. In comprehensive experiments on real instances, we demonstrate that the worst path delay is within 7% of its lower bound on average after a few iterations. The subsequent local search reduces this gap to 2% on average. Combining global and local sizing we are able to size more than 5.7 million circuits within 3 hours. For the clock skew scheduling problem we develop the first algorithm with a strongly polynomial running time for the cycle time minimization in the presence of different cycle times and multi-cycle paths. In practice, an iterative local search method is much more efficient. We prove that this iterative method maximizes the worst slack, even when restricting the feasible schedule to certain time intervals. Furthermore, we enhance the iterative local approach to determine a lexicographically optimum slack distribution. The clock skew scheduling problem is then generalized to allow for simultaneous data path optimization. In fact, this is a time-cost tradeoff problem. We developed the first combinatorial algorithm for computing time-cost tradeoff curves in graphs that may contain cycles. Starting from the lowest-cost solution, the algorithm iteratively computes a descent direction by a minimum cost flow computation. The maximum feasible step length is then determined by a minimum ratio cycle computation. This approach can be used in chip design for several optimization tasks, e.g. threshold voltage optimization or plane assignment. Finally, the optimization routines are combined into a timing closure flow. Here, the global placement is alternated with global performance optimization. Netweights are used to penalize the length of critical nets during placement. After the global phase, the performance is improved further by applying more comprehensive optimization routines on the most critical paths. In the end, the clock schedule is optimized and clocktrees are inserted. Computational results of the design flow are obtained on real-world computer chips

    Circuit Design Obfuscation for Hardware Security

    Get PDF
    Nowadays, chip design and chip fabrication are normally conducted separately by independent companies. Most integrated circuit (IC) design companies are now adopting a fab-less model: they outsource the chip fabrication to offshore foundries while concentrating their effort and resource on the chip design. Although it is cost-effective, the outsourced design faces various security threats since the offshore foundries might not be trustworthy. Attacks on the outsourced IC design can take on many forms, such as piracy, counterfeiting, overproduction and malicious modification, which are referred to as IC supply chain attacks. In this work, we investigate several circuit design obfuscation techniques to prevent the IC supply chain attacks by untrusted foundries. Logic locking is a gate-level design obfuscation technique that's proposed to protect the outsourced IC designs from piracy and counterfeiting by untrusted foundries. A locked IC preserves the correct functionality only when a correct key is provided. Recently, the security of logic locking is threatened by a strong attack called SAT attack, which can decipher the correct key of most logic locking techniques within a few hours even for a reasonably large key-size. In this dissertation, we investigate design techniques to improve the security of logic locking in three directions. Firstly, we propose a new locking technique called Anti-SAT to thwart the SAT attack. The Anti-SAT can make the complexity of SAT attack grow exponentially in key-size, hence making the attack computationally infeasible. Secondly, we consider an approximate version of SAT attack and investigate its application on fault-tolerant hardware such as neural network chips. Countermeasure to this approximate SAT attack is proposed and validated with rigorous proof and experiments. Lastly, we explore new opportunities in obfuscating the parametric characteristics of a circuit design (e.g. timing) so that another layer of defense can be added to existing countermeasures. Split fabrication based on 3D integration technology is another approach to obfuscate the outsourced IC designs. 3D integration is a technology that integrates multiple 2D dies to create a single high-performance chip, referred to as 3D IC. With 3D integration, a designer can choose a portion of IC design at his discretion and send them to a trusted foundry for secure fabrication while outsourcing the rest to untrusted foundries for advanced fabrication technology. In this dissertation, we propose a security-aware physical design flow for interposer-based 3D IC (also known as 2.5D IC). The design flow consists of security-aware partitioning and placement phases, which aim at obfuscating the circuit while preventing potential attacks such as proximity attack. Simulation results show that our proposed design flow is effective for producing secure chip layouts against the IC supply chain attacks. The circuit design obfuscation techniques presented in this dissertation enable future chip designers to take security into consideration at an early phase while optimizing the chip's performance, power, and reliability
    corecore