3 research outputs found

    Auditory feedback decreases timing variability for discontinuous and continuous motor tasks in autistic adults

    Get PDF
    IntroductionAutistic individuals demonstrate greater variability and timing error in their motor performance than neurotypical individuals, likely due at least in part to atypical cerebellar characteristics and connectivity. These motor difficulties may differentially affect discrete as opposed to continuous movements in autistic individuals. Augmented auditory feedback has the potential to aid motor timing and variability due to intact auditory-motor pathways in autism and high sensitivity in autistic individuals to auditory stimuli.MethodsThis experiment investigated whether there were differences in timing accuracy and variability in autistic adults as a function of task (discontinuous vs. continuous movements) and condition (augmented auditory feedback vs. no auditory feedback) in a synchronization-continuation paradigm. Ten autistic young adults aged 17–27 years of age completed the within-subjects study that involved drawing circles at 800 milliseconds intervals on a touch screen. In the discontinuous task, participants traced a series of discrete circles and paused at the top of each circle for at least 60 milliseconds. In the continuous task, participants traced the circles without pausing. Participants traced circles in either a non-auditory condition, or an auditory condition in which they heard a tone each time that they completed a circle drawing.ResultsParticipants had significantly better timing accuracy on the continuous timing task as opposed to the discontinuous task. Timing consistency was significantly higher for tasks performed with auditory feedback.DiscussionThis research reveals that motor difficulties in autistic individuals affect discrete timing tasks more than continuous tasks, and provides evidence that augmented auditory feedback may be able to mitigate some of the timing variability present in autistic persons’ movements. These results provide support for future investigation on the use of music-based therapies involving auditory feedback to address motor dysfunction in autistic individuals

    Variability of Coordination in Typically Developing Children Versus Children with Autism Spectrum Disorder with and without Rhythmic Signal

    No full text
    Motor coordination deficit is a cardinal feature of autism spectrum disorder (ASD). The evaluation of coordination of children with ASD is either lengthy, subjective (via observational analysis), or requires cumbersome post analysis. We therefore aimed to use tri-axial accelerometers to compare inter-limb coordination measures between typically developed (TD) children and children ASD, while jumping with and without a rhythmic signal. Children aged 5–6 years were recruited to the ASD group (n = 9) and the TD group (n = 19). Four sensors were strapped to their ankles and wrist and they performed at least eight consecutive jumping jacks twice: at a self-selected rhythm and with a metronome. The primary outcome measures were the timing lag (TL), the timing difference of the maximal acceleration of the left and right limbs, and the lag variability (LV), the variation of TL across the 5 jumps. The LV of the legs of children with ASD was higher compared to the LV of the legs of TD children during self-selected rhythm jumping (p < 0.01). Additionally, the LV of the arms of children with ASD, jumping with the rhythmic signal, was higher compared to that of the TD children (p < 0.05). There were no between-group differences in the TL parameter. Our preliminary findings suggest that the simple protocol presented in this study might allow an objective and accurate quantification of the intra-subject variability of children with ASD via actigraphy
    corecore