88,020 research outputs found
Fuel combustor
A fuel combustor comprises a chamber with air and fuel inlets and a combination gas outlet. The fuel is supplied to a vaporization zone and fuel and air are mixed in a pair of mixing chambers, each exemplified by a swirl can. The resultant mixture is directed into a combustion zone within the combustor. Heat pipes are arranged with one end portion substantially in the combustion zone and the other end in the vaporization zone of its appropriate mixing chamber. Some of the heat of combustion is thus carried back upstream into the swirl cans, to vaporize the fuel as it enters the vaporization zone in the swirl can, thereby improving vaporization and fuel mixing
Shock induced vaporization of anhydrite CaSO4 and calcite CaCO3
Discovery of abundant anhydrite (CaSO4) and gypsum (CaSO4.2H2O) in the otherwise carbonate sediments comprising the upper portion of the rocks contained within the Chicxulub impact crater has prompted research on the shock-induced vaporization of these minerals. We use a vaporization criterion determined by shock-induced entropy. We reanalyze the shock wave experiments of Yang [1]. He shocked 30% porous anhydrite and 46% porous calcite. Post-shock adiabatic expansion of the sample across a 5 mm-thick gap and then impact upon an aluminum witness plate backed by LiF window that is monitored with a VISAR. Reanalysis uses Herrman's P-alpha model [2] for porous materials, and a realistic interpolation gas equation-of-state for vaporization products. Derived values of the entropies for incipient and complete vaporization for anhydrite are 1.65±0.12 and 3.17±0.12 kJ(kg.K)–1, and for calcite these are 0.99±0.11 and 1.93±0.11 kJ(kg.K)–1. Corresponding pressures for incipient and complete vaporization along the Hugoniot of non-porous anhydrite are 32.5±2.5 and 122±13 GPa and for non-porous calcite are 17.8±2.9 and 54.1±5.3 GPa, respectively. These pressures are a factor of 2–3 lower than reported earlier by Yang
Thermochemical analyses of the oxidative vaporization of metals and oxides by oxygen molecules and atoms
Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms
Liquid-propellant droplet vaporization and combustion in high pressure environments
In order to correct the deficiencies of existing models for high-pressure droplet vaporization and combustion, a fundamental investigation into this matter is essential. The objective of this research are: (1) to acquire basic understanding of physical and chemical mechanisms involved in the vaporization and combustion of isolated liquid-propellant droplets in both stagnant and forced-convective environments; (2) to establish droplet vaporization and combustion correlations for the study of liquid-propellant spray combustion and two-phase flowfields in rocket motors; and (3) to investigate the dynamic responses of multicomponent droplet vaporization and combustion to ambient flow oscillations
Method and apparatus for distillation of liquids Patent
Purification apparatus for vaporization and fractional distillation of liquid
Highly focused supersonic microjets
The paper describes the production of thin, focused microjets with velocities
up to 850 m/s by the rapid vaporization of a small mass of liquid in an open
liquid-filled capillary. The vaporization is caused by the absorption of a
low-energy laser pulse. A likely explanation of the observed phenomenon is
based on the impingement of the shock wave caused by the nearly-instantaneous
vaporization on the free surface of the liquid. An experimental study of the
dependence of the jet velocity on several parameters is conducted, and a
semi-empirical relation for its prediction is developed. The coherence of the
jets, their high velocity and good reproducibility and controllability are
unique features of the system described. A possible application is to the
development of needle-free drug injection systems which are of great importance
for global health care.Comment: 10 pages, 11figure
Effect of degree of fuel vaporization upon emissions for a premixed prevaporized combustion system
An experimental and analytical study of the combustion of partially vaporized fuelair mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected show near linear increases in nitrogen oxide emissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratio of 0.72, the degree of vaporization had very little impact on nitrogen oxide emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes
Aerothermochemical analysis of non-oscillatory and oscillatory characteristics of liquid bipropellant rocket motors - droplet evaporation, wave equations, motor instrumentation, non-oscillatory program computation
Model to determine vaporization rate of liquid fuel drople
- …
