598 research outputs found

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Lane detection in autonomous vehicles : A systematic review

    Get PDF
    One of the essential systems in autonomous vehicles for ensuring a secure circumstance for drivers and passengers is the Advanced Driver Assistance System (ADAS). Adaptive Cruise Control, Automatic Braking/Steer Away, Lane-Keeping System, Blind Spot Assist, Lane Departure Warning System, and Lane Detection are examples of ADAS. Lane detection displays information specific to the geometrical features of lane line structures to the vehicle's intelligent system to show the position of lane markings. This article reviews the methods employed for lane detection in an autonomous vehicle. A systematic literature review (SLR) has been carried out to analyze the most delicate approach to detecting the road lane for the benefit of the automation industry. One hundred and two publications from well-known databases were chosen for this review. The trend was discovered after thoroughly examining the selected articles on the method implemented for detecting the road lane from 2018 until 2021. The selected literature used various methods, with the input dataset being one of two types: self-collected or acquired from an online public dataset. In the meantime, the methodologies include geometric modeling and traditional methods, while AI includes deep learning and machine learning. The use of deep learning has been increasingly researched throughout the last four years. Some studies used stand-Alone deep learning implementations for lane detection problems. Meanwhile, some research focuses on merging deep learning with other machine learning techniques and classical methodologies. Recent advancements imply that attention mechanism has become a popular combined strategy with deep learning methods. The use of deep algorithms in conjunction with other techniques showed promising outcomes. This research aims to provide a complete overview of the literature on lane detection methods, highlighting which approaches are currently being researched and the performance of existing state-of-The-Art techniques. Also, the paper covered the equipment used to collect the dataset for the training process and the dataset used for network training, validation, and testing. This review yields a valuable foundation on lane detection techniques, challenges, and opportunities and supports new research works in this automation field. For further study, it is suggested to put more effort into accuracy improvement, increased speed performance, and more challenging work on various extreme conditions in detecting the road lane

    Advances in optimisation algorithms and techniques for deep learning

    Get PDF
    In the last decade, deep learning(DL) has witnessed excellent performances on a variety of problems, including speech recognition, object recognition, detection, and natural language processing (NLP) among many others. Of these applications, one common challenge is to obtain ideal parameters during the training of the deep neural networks (DNN). These typical parameters are obtained by some optimisation techniques which have been studied extensively. These research have produced state-of-art(SOTA) results on speed and memory improvements for deep neural networks(NN) architectures. However, the SOTA optimisers have continued to be an active research area with no compilations of the existing optimisers reported in the literature. This paper provides an overview of the recent advances in optimisation algorithms and techniques used in DNN, highlighting the current SOTA optimisers, improvements made on these optimisation algorithms and techniques, alongside the trends in the development of optimisers used in training DL based models. The results of the search of the Scopus database for the optimisers in DL provides the articles reported as the summary of the DL optimisers. From what we can tell, there is no comprehensive compilation of the optimisation algorithms and techniques so far developed and used in DL research and applications, and this paper summarises these facts

    Hybrid harmony search algorithm for continuous optimization problems

    Get PDF
    Harmony Search (HS) algorithm has been extensively adopted in the literature to address optimization problems in many different fields, such as industrial design, civil engineering, electrical and mechanical engineering problems. In order to ensure its search performance, HS requires extensive tuning of its four parameters control namely harmony memory size (HMS), harmony memory consideration rate (HMCR), pitch adjustment rate (PAR), and bandwidth (BW). However, tuning process is often cumbersome and is problem dependent. Furthermore, there is no one size fits all problems. Additionally, despite many useful works, HS and its variant still suffer from weak exploitation which can lead to poor convergence problem. Addressing these aforementioned issues, this thesis proposes to augment HS with adaptive tuning using Grey Wolf Optimizer (GWO). Meanwhile, to enhance its exploitation, this thesis also proposes to adopt a new variant of the opposition-based learning technique (OBL). Taken together, the proposed hybrid algorithm, called IHS-GWO, aims to address continuous optimization problems. The IHS-GWO is evaluated using two standard benchmarking sets and two real-world optimization problems. The first benchmarking set consists of 24 classical benchmark unimodal and multimodal functions whilst the second benchmark set contains 30 state-of-the-art benchmark functions from the Congress on Evolutionary Computation (CEC). The two real-world optimization problems involved the three-bar truss and spring design. Statistical analysis using Wilcoxon rank-sum and Friedman of IHS-GWO’s results with recent HS variants and other metaheuristic demonstrate superior performance

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    DEEP LEARNING APPROACHES IN PROBLEMS IN VARIOUS-DIMENSIONAL DATA

    Get PDF
    This thesis develop efficient deep learning based methods for a series of tasks. I believe these problems to be inherently worth developing because of their connections to problems of practical importance. In particular, we predict the state of pain data, address the problem of visually locating two-dimensional text objects in natural scenes, and deal with LIDAR-based point cloud car detection in autonomous driving respectively. We first addressed the pain management task. Our first novelty is converting the original collected attributes into binary features, thus avoiding the hard problem of how to represent highly-diverged attributes of collected data. We employed the discriminative RBM to directly solve the problem of feature selection and prediction simultaneously. We also observed the discriminative RBM appear to yield better accuracy than to the classical PCA and LDA with SVM classifier methods. To the best of our knowledge, our work is the first one reported to incorporate discriminate RBM (one-layer DBN) in the pain management research. We proposed a fast text-search approach. We directly track text as an object rather than detect characters and group them together. In the processing of grouping, the majority of existing methods require a fixed-sized lexicon dictionary which reduce the generality of their models. Our approach does not need the lexicon information. Our pre-trained ConvNet automatically output the coordinates of text bounding boxes associated scores. The detections are performed in the manner of single-shot forward passing. We significantly improved the computation efficiency by a large margin. We utilize the ConvNet to represent whole scene image rather than text-only features, and encode the contextual spatial information into localization. In addition, the majority of existing text detection methods’ performance heavily rely on the complexity of image background. In contrast, the pipeline represented in this thesis does not have this limitation. In order to detect sparse 3D point cloud, we proposed a new 3D ConvNet model by extending convolutional layer from 2D to 3D. Experiments on our collected 16-layer Lidar data demonstrates that the proposed method outperforms the regular top-down projection-based method and significantly reduce the detection time

    Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy

    Get PDF
    Autonomous vehicles are becoming central for the future of mobility, supported by advances in deep learning techniques. The performance of aself-driving system is highly dependent on the quality of the perception task. Developments in sensor technologies have led to an increased availability of 3D scanners such as LiDAR, allowing for a more accurate representation of the vehicle's surroundings, leading to safer systems. The rapid development and consequent rise of research studies around self-driving systems since early 2010, resulted in a tremendous increase in the number and novelty of object detection methods. After the first wave of works that essentially tried to expand known techniques from object detection in images, more recently there has been a notable development in newer and more adapted to LiDAR data works. This paper addresses the existing literature on object detection using LiDAR data within the scope of self-driving and brings a systematic way for analysing it. Unlike general object detection surveys, we will focus on point-cloud data, which presents specific challenges, notably its high-dimensional and sparse nature. This work introduces a common object detection pipeline and taxonomy to facilitate a thorough comparison between different techniques and, departing from it, this work will critically examine the representation of data (critical for complexity reduction), feature extraction and finally the object detection models. A comparison between performance results of the different models is included, alongside with some future research challenges.This work is supported by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n. 037902; Funding Reference: POCI-01-0247-FEDER-037902]

    Physical Adversarial Attack meets Computer Vision: A Decade Survey

    Full text link
    Although Deep Neural Networks (DNNs) have achieved impressive results in computer vision, their exposed vulnerability to adversarial attacks remains a serious concern. A series of works has shown that by adding elaborate perturbations to images, DNNs could have catastrophic degradation in performance metrics. And this phenomenon does not only exist in the digital space but also in the physical space. Therefore, estimating the security of these DNNs-based systems is critical for safely deploying them in the real world, especially for security-critical applications, e.g., autonomous cars, video surveillance, and medical diagnosis. In this paper, we focus on physical adversarial attacks and provide a comprehensive survey of over 150 existing papers. We first clarify the concept of the physical adversarial attack and analyze its characteristics. Then, we define the adversarial medium, essential to perform attacks in the physical world. Next, we present the physical adversarial attack methods in task order: classification, detection, and re-identification, and introduce their performance in solving the trilemma: effectiveness, stealthiness, and robustness. In the end, we discuss the current challenges and potential future directions.Comment: 32 pages. Under Revie
    • …
    corecore