4,671 research outputs found

    Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection

    Full text link
    We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.Comment: Accepted for publication at German Conference on Pattern Recognition (GCPR) 2017. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualisation and Social Computing

    StructVIO : Visual-inertial Odometry with Structural Regularity of Man-made Environments

    Full text link
    We propose a novel visual-inertial odometry approach that adopts structural regularity in man-made environments. Instead of using Manhattan world assumption, we use Atlanta world model to describe such regularity. An Atlanta world is a world that contains multiple local Manhattan worlds with different heading directions. Each local Manhattan world is detected on-the-fly, and their headings are gradually refined by the state estimator when new observations are coming. With fully exploration of structural lines that aligned with each local Manhattan worlds, our visual-inertial odometry method become more accurate and robust, as well as much more flexible to different kinds of complex man-made environments. Through extensive benchmark tests and real-world tests, the results show that the proposed approach outperforms existing visual-inertial systems in large-scale man-made environmentsComment: 15 pages,15 figure

    The toulouse vanishing points dataset

    Get PDF
    International audienceIn this paper we present the Toulouse Vanishing Points Dataset, a public photographs database of Manhattan scenes taken with an iPad Air 1. The purpose of this dataset is the evaluation of vanishing points estimation algorithms. Its originality is the addition of Inertial Measurement Unit (IMU) data synchronized with the camera under the form of rotation matrices. Moreover, contrary to existing works which provide vanishing points of reference in the form of single points, we computed uncertainty regions. The Toulouse Vanishing Points Dataset is publicly available at http://ubee.enseeiht.fr/tvp

    TVPD : un jeu de données pour évaluer les algorithmes d'estimation de points de fuite

    Get PDF
    International audienceNous présentons à travers cet article un nouveau jeu de données comprenant un corpus de photos de scènes dites de Manhattan prises avec un iPad Air 1. Ce jeu de données permet d'évaluer des algorithmes d'estimation de points de fuite. À la différence des jeux de données existants, des données inertielles issues des différents capteurs de l'iPad, synchronisées avec la caméra sont également présentes. Ces données inertielles peuvent être utilisées pour améliorer les performances d'un algorithme d'estimation de points de fuite. Enfin, nous présentons un nouvel algorithme d'estimation de régions d'incertitude sur les points de fuite estimés à partir des segments vérités-terrain

    Vanishing Point Estimation in Uncalibrated Images with Prior Gravity Direction

    Full text link
    We tackle the problem of estimating a Manhattan frame, i.e. three orthogonal vanishing points, and the unknown focal length of the camera, leveraging a prior vertical direction. The direction can come from an Inertial Measurement Unit that is a standard component of recent consumer devices, e.g., smartphones. We provide an exhaustive analysis of minimal line configurations and derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers. Additionally, we design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization. Combining all solvers in a hybrid robust estimator, our method achieves increased accuracy even with a rough prior. Experiments on synthetic and real-world datasets demonstrate the superior accuracy of our method compared to the state of the art, while having comparable runtimes. We further demonstrate the applicability of our solvers for relative rotation estimation. The code is available at https://github.com/cvg/VP-Estimation-with-Prior-Gravity.Comment: Accepted at ICCV 202
    • …
    corecore