25,635 research outputs found

    A note on the expressive power of linear orders

    Get PDF
    This article shows that there exist two particular linear orders such that first-order logic with these two linear orders has the same expressive power as first-order logic with the Bit-predicate FO(Bit). As a corollary we obtain that there also exists a built-in permutation such that first-order logic with a linear order and this permutation is as expressive as FO(Bit)

    Sketched Answer Set Programming

    Full text link
    Answer Set Programming (ASP) is a powerful modeling formalism for combinatorial problems. However, writing ASP models is not trivial. We propose a novel method, called Sketched Answer Set Programming (SkASP), aiming at supporting the user in resolving this issue. The user writes an ASP program while marking uncertain parts open with question marks. In addition, the user provides a number of positive and negative examples of the desired program behaviour. The sketched model is rewritten into another ASP program, which is solved by traditional methods. As a result, the user obtains a functional and reusable ASP program modelling her problem. We evaluate our approach on 21 well known puzzles and combinatorial problems inspired by Karp's 21 NP-complete problems and demonstrate a use-case for a database application based on ASP.Comment: 15 pages, 11 figures; to appear in ICTAI 201

    Neo: A Learned Query Optimizer

    Full text link
    Query optimization is one of the most challenging problems in database systems. Despite the progress made over the past decades, query optimizers remain extremely complex components that require a great deal of hand-tuning for specific workloads and datasets. Motivated by this shortcoming and inspired by recent advances in applying machine learning to data management challenges, we introduce Neo (Neural Optimizer), a novel learning-based query optimizer that relies on deep neural networks to generate query executions plans. Neo bootstraps its query optimization model from existing optimizers and continues to learn from incoming queries, building upon its successes and learning from its failures. Furthermore, Neo naturally adapts to underlying data patterns and is robust to estimation errors. Experimental results demonstrate that Neo, even when bootstrapped from a simple optimizer like PostgreSQL, can learn a model that offers similar performance to state-of-the-art commercial optimizers, and in some cases even surpass them

    Combination Strategies for Semantic Role Labeling

    Full text link
    This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback
    • ā€¦
    corecore