5,257 research outputs found

    Pricing of Gas Swing Options using Monte Carlo Methods

    Get PDF
    Motivated by the changing nature of the natural gas industry in the European Union driven by the liberalization process, we focus on pricing of gas swing options. These options are embedded in typical gas sales agreements in the form of offtake flexibility concerning volume and time. The gas swing option is actually a set of several American puts on a spread between prices of two or more energy commodities. This fact together with the fact that the energy markets are fundamentally different from traditional financial security markets is important for our choice of valuation technique. Due to the specific features of the energy markets, the existing analytic approximations for spread option pricing are hardly applicable to our framework. That is why we employ Monte Carlo methods to model the spot price dynamics of the underlying commodities. The price of an arbitrarily chosen gas swing option is then computed in accordance with the concept of risk-neutral expectations. Finally, our result is compared with the real payoff from the option realized at time of the option execution and the maximum ex-post payoff the buyer could generate in case he knew the future, discounting to the original time of the option pricing.energy markets, gas sales agreement, gas swing option, Monte Carlo simulations, spread option pricing

    Utility indifference pricing and hedging for structured contracts in energy markets

    Get PDF
    In this paper we study the pricing and hedging of structured products in energy markets, such as swing and virtual gas storage, using the exponential utility indifference pricing approach in a general incomplete multivariate market model driven by finitely many stochastic factors. The buyer of such contracts is allowed to trade in the forward market in order to hedge the risk of his position. We fully characterize the buyer's utility indifference price of a given product in terms of continuous viscosity solutions of suitable nonlinear PDEs. This gives a way to identify reasonable candidates for the optimal exercise strategy for the structured product as well as for the corresponding hedging strategy. Moreover, in a model with two correlated assets, one traded and one nontraded, we obtain a representation of the price as the value function of an auxiliary simpler optimization problem under a risk neutral probability, that can be viewed as a perturbation of the minimal entropy martingale measure. Finally, numerical results are provided.Comment: 32 pages, 5 figure

    Optimal quantization for the pricing of swing options

    Get PDF
    In this paper, we investigate a numerical algorithm for the pricing of swing options, relying on the so-called optimal quantization method. The numerical procedure is described in details and numerous simulations are provided to assert its efficiency. In particular, we carry out a comparison with the Longstaff-Schwartz algorithm.Comment: 27

    UK gas markets : the market price of risk and applications to multiple interruptible supply contracts.

    Get PDF
    We employ the Schwartz and Smith [Schwartz, E., and J. Smith, 2000, Short-term variations and long-term dynamics in commodity prices, Management Science 46, 893–911.] model to explore the dynamics of the UK gasmarkets. We discuss in detail the short-termand long-termmarket prices of risk borne by the market players and how deviations from expected cyclical storage affect the short-term market price of risk. Finally, we illustrate an application of the model by pricing interruptible supply contracts that are currently traded in the UKInterruptible supply contracts; Gas markets; Commodities; Market price of short-term and long-term risk; Multi-exercise Bermudan options; Convenience yield;

    The Evaluation of Multiple Year Gas Sales Agreement with Regime Switching

    Get PDF
    A typical gas sales agreement (GSA) also called a gas swing contract, is an agreement between a supplier and a purchaser for the delivery of variable daily quantities of gas, between specified minimum and maximum daily limits, over a certain number of years at a specified set of contract prices. The main constraint of such an agreement that makes them difficult to value are that in each gas year there is a minimum volume of gas (termed take-or-pay or minimum bill) for which the buyer will be charged at the end of the year (or penalty date), regardless of the actual quantity of gas taken. We propose a framework for pricing such swing contracts for an underlying gas forward price curve that follows a regime-switching process in order to better capture the volatility behaviour in such markets. With the help of a recombing pentanonial tree, we are able to efficiently evaluate the prices of the swing contracts, find optimal daily decisions and optimaly early use of both the make-up bank and the carry forward bank at different regimes. We also show how the change of regime will affect the decisions.gas sales agreement; swing contract; take-or-pay; make-up; carry forward; forward price curve; regime switching volatility; recombing pentanomial tree

    Pricing swing options and other electricity derivatives

    Get PDF
    The deregulation of regional electricity markets has led to more competitive prices but also higher uncertainty in the future electricity price development. Most markets exhibit high volatilities and occasional distinctive price spikes, which results in demand for derivative products which protect the holder against high prices. A good understanding of the stochastic price dynamics is required for the purposes of risk management and pricing derivatives. In this thesis we examine a simple spot price model which is the exponential of the sum of an Ornstein-Uhlenbeck and an independent pure jump process. We derive the moment generating function as well as various approximations to the probability density function of the logarithm of this spot price process at maturity T. With some restrictions on the set of possible martingale measures we show that the risk neutral dynamics remains within the class of considered models and hence we are able to calibrate the model to the observed forward curve and present semi-analytic formulas for premia of path-independent options as well as approximations to call and put options on forward contracts with and without a delivery period. In order to price path-dependent options with multiple exercise rights like swing contracts a grid method is utilised which in turn uses approximations to the conditional density of the spot process. Further contributions of this thesis include a short discussion of interpolation methods to generate a continuous forward curve based on the forward contracts with delivery periods observed in the market, and an investigation into optimal martingale measures in incomplete markets. In particular we present known results of q-optimal martingale measures in the setting of a stochastic volatility model and give a first indication of how to determine the q-optimal measure for q=0 in an exponential Ornstein-Uhlenbeck model consistent with a given forward curve
    corecore