2,826,715 research outputs found
Validation issues in educational data mining:the case of HTML-Tutor and iHelp
Validation is one of the key aspects in data mining and even more so in educational data mining (EDM) owing to the nature of the data. In this chapter, a brief overview of validation in the context of EDM is given and a case study is presented. The field of the case study is related to motivational issues, in general, and disengagement detection, in particular. There are several approaches to eliciting motivational knowledge from a learner’s activity trace; in this chapter the validation of such an approach is presented and discussed
Reducing the Probability of False Positive Research Findings by Pre-Publication Validation - Experience with a Large Multiple Sclerosis Database
*Objective*
We have assessed the utility of a pre-publication validation policy in reducing the probability of publishing false positive research findings. 
*Study design and setting*
The large database of the Sylvia Lawry Centre for Multiple Sclerosis Research was split in two parts: one for hypothesis generation and a validation part for confirmation of selected results. We present case studies from 5 finalized projects that have used the validation policy and results from a simulation study.
*Results*
In one project, the "relapse and disability" project as described in section II (example 3), findings could not be confirmed in the validation part of the database. The simulation study showed that the percentage of false positive findings can exceed 20% depending on variable selection. 
*Conclusion*
We conclude that the validation policy has prevented the publication of at least one research finding that could not be validated in an independent data set (and probably would have been a "true" false-positive finding) over the past three years, and has led to improved data analysis, statistical programming, and selection of hypotheses. The advantages outweigh the lost statistical power inherent in the process
Temporal evolution of generalization during learning in linear networks
We study generalization in a simple framework of feedforward linear networks with n inputs and n outputs, trained from examples by gradient descent on the usual quadratic error function. We derive analytical results on the behavior of the validation function corresponding to the LMS error function calculated on a set of validation patterns. We show that the behavior of the validation function depends critically on the initial conditions and on the characteristics of the noise. Under certain simple assumptions, if the initial weights are sufficiently small, the validation function has a unique minimum corresponding to an optimal stopping time for training for which simple bounds can be calculated. There exists also situations where the validation function can have more complicated and somewhat unexpected behavior such as multiple local minima (at most n) of variable depth and long but finite plateau effects. Additional results and possible extensions are briefly discussed
Statistical validation of simulation models: A case study
Rigorous statistical validation requires that the responses of the model and the real system have the same expected values. However, the modeled and actual responses are not comparable if they are obtained under different scenarios (environmental conditions). Moreover, data on the real system may be unavailable; sensitivity analysis can then be applied to find out whether the model inputs have effects on the model outputs that agree with the experts' intuition. Not only the total model, but also its modules may be submitted to such sensitivity analyses. This article illustrates these issues through a case study, namely a simulation model for the use of sonar to search for mines on the sea bottom. The methodology, however, applies to models in general.Simulation Models;Statistical Validation;statistics
Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery
Intraoperative segmentation and tracking of minimally invasive instruments is
a prerequisite for computer- and robotic-assisted surgery. Since additional
hardware like tracking systems or the robot encoders are cumbersome and lack
accuracy, surgical vision is evolving as promising techniques to segment and
track the instruments using only the endoscopic images. However, what is
missing so far are common image data sets for consistent evaluation and
benchmarking of algorithms against each other. The paper presents a comparative
validation study of different vision-based methods for instrument segmentation
and tracking in the context of robotic as well as conventional laparoscopic
surgery. The contribution of the paper is twofold: we introduce a comprehensive
validation data set that was provided to the study participants and present the
results of the comparative validation study. Based on the results of the
validation study, we arrive at the conclusion that modern deep learning
approaches outperform other methods in instrument segmentation tasks, but the
results are still not perfect. Furthermore, we show that merging results from
different methods actually significantly increases accuracy in comparison to
the best stand-alone method. On the other hand, the results of the instrument
tracking task show that this is still an open challenge, especially during
challenging scenarios in conventional laparoscopic surgery
- …
