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Abstract

Rigorous statistical validation requires that the responses of the model and the real
system have the same expected values. However, the modeled and actual responses are not
comparable if they are obtained under different scenarios (environmental conditions).
Moreover, data on the real system may be unavailable; sensitivity analysis can then be
applied to find out whether the model inputs have effects on the model outputs that agree
with the experts’ intuition. Not only the total model, but also its modules may be sub-
mitted to such sensitivity analyses. This article illustrates these issues through a case
study, namely a simulation model for the use of sonar to search for mines on the sea
bottom. The methodology, however, applies to models in general.
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1. Introduction

This section answers the following questions. What is validation? What has the
literature to say in general on this topic; how about case studies? What is the role of
statistical techniques? What is this article’s contribution; how is it organized?

Validation is defined in this article, following a classic simulation textbook, Law
and Kelton (1991, p. 299): ’Validation is concerned with determining whether the concep-
tual simulation model (as opposed to the computer program) is an accurate representation
of the system under study’. Hence, validation can not result in a perfect model: the perfect
model would be the real system itself. Instead, the model should be ’good enough’, which
depends on the goals of the model. For example, some applications need only relative (not
absolute) simulation responses corresponding to different scenarios, as this article will
demonstrate.

General discussionson validation of simulation models can be found in all text-
books on simulation. Examples are Banks and Carson (1984), Law and Kelton (1991, pp.
298-324), and Pegden, Shannon, and Sadowski (1990, pp. 133-162). A well-known article
is Sargent (1991). Recent survey articles are Balci (1995), including 102 references, and
Kleijnen (1995), including 61 references.

1 Acknowledgement: Gustav A. Alink, a former employee of FEL-TNO, was a
tremendous help during the whole project that is described in this paper. Marcel Das, a
Tilburg doctoral student, gave valuable comments on a preliminary draft of this paper.
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Case studieson validation, however, are rare. Kleijnen (1995) could retrieve only a
few case studies.

There is a special need to further develop the theory on validation, especially in
view of the great importance of validation in the practice of Operations Research (OR). A
false model may generate output that is sheer nonsense, or worse, it may generate subtle
nonsense that goes unnoticed. Such a model may lead to wrong decisions.

The present article is meant to contribute to the practice and the theory of valida-
tion. Though the case study concerns a specific simulation model, the methodology applies
to models in general. This article discusses in detail how to apply familiar statistical tech-
niques such as regression analysis, design of experiments, and t tests. It further shows how
large simulation models can be validated in two stages: in stage #1 individual modules are
validated (see §3.1); in stage #2 the whole simulation model is treated as one black box,
and is validated (see §3.2). Further, all simulation models with randomness lead to the
question how to compare real and simulated responses through statistical tests. Other
general topics in validation are briefly discussed in §4.1 through §4.6.

Statistical techniquesmay yield reproducible, objective, quantitative data about the
quality of a given simulation model. Experience shows that the correct use of mathemati-
cal statistics in operations research is not so simple. It is easy to apply the wrong statisti-
cal techniques: there is much statistical software, but that software does not warn against
abuse (such as violations of the statistical assumptions). That software certainly does not
instruct the operations researchers to apply mathematical statistics to validation problems.
On hindsight the correct use of statistics may seem easy (Balci 1995 states: ’False beliefs
exist about testing ... testing is easy ... no training or prior experience is required’). The
statistical analysis in this article deviates from the analyses used in other naval studies.
The latter studies are rather crude from the viewpoint of mathematical statistics. Notice
that statistical techniques do not solve all problems in validation; see Forrester and Senge
(1980).

Recently the interest in validation has shown a sharp increase in the USA defense
community (Kleijnen 1995 gives seven references; also see Balci 1995). In Europe and
China the defense organizations also seem to take the initiative (see Wang, Yin, Tang, and
Xu 1993). The renewed interest in validation is further illustrated by a recent monograph
(Knepell and Arangno 1993), and a Special Issue on ’Model Validation in Operational
Research’ of theEuropean Journal of Operational Research(see Landry and Oral 1993).

Unfortunately, this interest has not resulted in a standard theory on validation.
Neither has it produced a standard ’box of tools’ from which tools are taken in a natural
order (see Landry and Oral 1993). There does exist a plethora of philosophical theories,
statistical techniques, software practices, and so on. Severalclassificationsof validation
methods are possible (Kleijnen 1995 gives six references). The emphasis of the present
article is on statistical techniques.

The case study in this article will illustrate that there are no perfect solutions for
the problems of validation in simulation. The whole process has elements of art as well as
science.

The study concerns a model for the use ofsonar when searching for mines on the
sea bottom. The model was developed for the Dutch navy, by TNO-FEL (Applied
Scientific Research-Physics and Electronics Laboratory); TNO-FEL is a major military
research institute in the Netherlands. The model is called HUNTOP (mine HUNTing
OPeration). Other countries have similar simulation models for naval mine hunting (the
corresponding literature is classified).

The rest of this article is organized as follows. §2 discusses the HUNTOP model in
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some detail. This model includes several factors: the environment (namely, the mine field
and acoustical characteristics of the sea water), the sonar system, the ship’s course, and
the human operator’s performance. §3 validates the simulation model in two stages (these
two stages correspond with the levels 2 and 3 in Balci 1995). §3.1 gives sensitivity analy-
ses of some modules, applying experimental design theory and regression analysis. §3.2
compares simulated detection probabilities -resulting from the model as a whole- with real
probabilities. This comparison encounters statistical complications, such as dependencies
among estimated detection probabilities of different mines. It is important to measure the
scenarios (environments) that drive the simulation and the real-life test respectively. §4
discusses remaining issues. In practice, a validation project has limited time and financial
resources; so at the end of the project there remain problems to be investigated. §4.1
through §4.6 discuss issues that arise in the validation of simulation models in general
(namely, screening, risk analysis, Gaussian approximations, type I and II errors, less
stringent statistical validation, and animation); §4.7 through §4.13 briefly present remain-
ing validation problems that are specific for naval mine hunting models. §5 gives a
summary and conclusions. Some conclusions hold for simulation and modeling in general,
whereas some results apply only to this particular case study.

2. Naval Mine Hunting Model HUNTOP

HUNTOP is a complicated simulation model that reflects the combined knowledge
of a number of experts in naval mine hunting. This article is not meant to discuss all the
intricacies of naval mine hunting. Instead, this article focusses on the validation of
HUNTOP. Therefore this section is limited to those aspects of HUNTOP that are
necessary to understand this article’s approach to the validation of simulation models.

Naval mine hunting is performed by ships equipped withsonar. Conceptually, a
sonar may be viewed as atorchlight: in the ’dark’ a certain area becomes ’lighted’ or ’in-
sonified’, so objects within that area may become visible on a sonar display. Hence, as the
ship with its sonar moves, new areas become visible, while previous areas move out of
sight.

Dispersed over the area aremines and NOMBOs, NOn-mine Minelike Bottom
Objects, which are harmless objects that look like mines. Both types of objects can be
detected only if they are within the insonified area.

Operationally, an imaginary straight line ortrack is drawn over the area. The ship
tries to follow this track; however, navigation errors do occur. To cover the whole mine
field, several tracks may be planned. At both sides of each track, the area is subdivided
into strips that are mutually exclusive and exhaustive.

Sonar stands for SOund NAvigation Ranging: the device detects objects by the
soundwaves these objects reflect (see the definition in ’The Random House Dictionary’).
2Physics theory proves that sound velocity varies with water temperature and salinity.
Obviously, this temperature and salinity vary with the water depth. The experts use a
Sound Velocity Profile(SVP), which maps sound velocity as a function of depth. In
HUNTOP an SVP is a simple piecewise-linear function that is kept constant during the
whole simulation run; a simulation run is one voyage of the ship over the whole mine
field. In practice, however, the SVP varies along the track. And even at the same place,
the SVP will show seasonal and daily variations. So from the start of the validation
project, the SVP seemed an important factor.

When an object is insonified, its echo appears on the sonar screen with a certain



4

contrast. Technically, this contrast is determined by the following three components (a full
understanding of these components is not essential for this article, but terms displayed in
italics will be used further on):
(i) The echoof the object itself. This echo depends deterministically on several factors, for
example, the object’s size.
(ii) Reverberation: the echo of the object’s environment, that is, reflections from the sea
bottom, the water surface, and the water itself. Reverberation depends deterministically on
the grazing angle (the angle at which the sonar beam hits the bottom), thebottom type(a
rocky bottom reflects sound more than sand does), and some more factors.
(iii) Acoustic noise: sounds generated by the ship, waves, marine life, and so on. Acoustic
noise may generate random,spuriouscontrasts.

Mines may be hidden behind hills on the sea bottom. So thebottom profileseems
to have an important effect on the mine detection probabilities.

A contrast may be missed by thehuman operator. Human behavior shows noise
and is therefore represented by statistical distribution functions, called operator curves. An
operator curvegives the detection probability of an echo as an increasing function of the
time that the echo has been visible.

An object isvisible only during a certain time, which depends on thesonar window
(comparable with the light circle of a torch) and on theship position (position of the
object relative to the ship’s course). When the object becomes invisible or the operator is
busy, the detection probability drops to zero.

Actually the model usesseveraloperator curves. For example, if there are many
echoes on the sonar screen, then the detection probability of an individual object is lower,
all other things being equal.

[Whenever a detection occurs, the operator must classify the observed contrast as
either a mine or a NOMBO. That classification may be true or false. HUNTOP, however,
does not cover this classification stage nor any other follow-up operations such as sending
an unmanned mini-submarine to identify a classified object or to neutralize or destroy the
mine. Also see §4.11.]

The laws of physics(for example, Snell’s law) that govern sonar beam propagation
are well known and aredeterministic. The environment, however, is not well known:
accurate information on the current SVP and the sea bottom’s profile is hard to obtain.
The simulation uses a single SVP within one run; the bottom profile is modeled by a
simple geometric pattern, which is fixed within a single simulation run. So, even if the
model is perfect, it may give the wrong answer when fed with the wrong inputs (problem
of data validity). This type ofuncertaintymust be distinguished fromrandom noise, which
occurs in the operator module (and in other modules that will follow); also see Kleijnen
(1994).

In many physics laws,time is continuous. The simulation model, however, is pro-
grammed with time sliced into periods of fixed length (discrete event simulation, such as
queueing simulation, uses time steps of variable length). In other words, the model con-
sists of difference equations, not differential equations. [The time slice has a length of
three seconds if the ship’s speed is two meters per second; at this time step, numerical
accuracy is acceptable.]

The model iscalibrated: a parameter without physical interpretation is used to
modify the computed contrasts such that the model’s outputs are closer to the outputs ob-
served in practice. (Also see §4.13.)
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The model is meant to be used for diverspurposes. One goal may be to compare
different tactics for mine hunting; for example, the tilt angle of the sonar may be changed
(in the torchlight analogy, think of shining farther away, so a larger area is seen, albeit
with less intensity). Moreover, a given tactic may give different results depending on the
environment. Therefore the non-controllable, environmental factors should also be investi-
gated. Besides these relative responses,absolutepredictions are of interest: the expected
detection probabilities in a given situation may be used to determine the ’huntability’ of
the mine field and to assess the performance of a particular sonar system. The presence of
several goals complicates the validation: see the definition of validation in §1.

Altogether the simulation model has nearly40 inputs; some were mentioned above.
That model is organized into a number ofmodules or subroutines. Examples are the
ship’s position, the operator’s state, the object’s visibility, and the object’s contrast; the
latter three modules give the inputs for the detection probability module.

[There are actually several model options. For example, the SVP may be either
input to the model or it may be calculated as a function of salinity and temperature. This
article, however, concentrates on the SVP as input. Other examples are reverberation and
noise, which are also modeled in two ways. Moreover, there is an analytical variant of this
model. The simulation results can be used to check this analytical model.]

For reasons of confidentiality this article does not give more details on HUNTOP
(those details are presented in a classified report, Alink and Vermeulen, 1991).

Summary: In the HUNTOP model the mine detection probabilities depend primarily
on the following factors.
(i) Environmental factors: the mine field (including the number of mines and NOMBOs),
the sea (depth, SVP, and noise level), and the sea bottom (type and profile).
(ii) The sonar system (technical specifications and operational settings such as tilt angle).
(iii) The ship’s course (including navigation error).
(iv) The operator’s performance.

3. Validation

The present section is more or less achronologicalaccount of issues that arose in
the HUNTOP validation study. As this section will show, validation may proceed in two
stages; in stage #1 individual modules are validated (see §3.1); in stage #2 the whole
simulation model is treated as one black box, and is validated (see §3.2).

3.1 Sensitivity analysis per module

Some modules within the model giveintermediateoutput that is hard to observe in
practice, and hence hard to validate. Sensitivity analysis may be applied to such modules,
in order to check if certain factor effects have signs (directions) that agree with experts’
prior qualitative knowledge.

[If the real system being simulated, does not yet exist, then real-world data are not
available. In that case sensitivity analysis should be applied to the whole model too.]

In practice, sensitivity analysis is donead hoc. Often a base case is selected. Next
each factor is changed, one at a time. Two or three values are simulated for each
quantitative factor. For qualitative factors a few ’values’ are simulated. The resulting
responses are analyzed crudely, for example, ’eye-balled’. Van Groenendaal (1994) gives
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several examples of such ’practical’ sensitivity analysis.
This article, however, advocates the followingscientific approach. First specify a

regression metamodelor response surface, that is, approximate the input/output behavior
of the complicated simulation model by a simple function. Examples of such approxima-
tions are (i) models with only main or first-order effects, (ii) models augmented with two-
factor interactions or cross-products between pairs of inputs, and (iii) models further
augmented with pure quadratic effects (which quantify curvature of the response surface);
see Kleijnen (1987, 1994, 1995). Examples will be given for HUNTOP.

Based on the regression model with (say) Q effects, select anexperimental design,
that is, a combination of (say) n input values for the simulation model. Obviously, the
more parameters the metamodel has, the more combinations are required. For example, a
first-order approximation with three inputs (x1, x2, x3) requires that four combinations be
simulated: there is the dummy factor (x0 = 1) with its ’grand effect’ or ’intercept’ (say)β0;
so in total there are four effects to be estimated, namelyβ0 throughβ3.

Next estimate the factor effectsβ from the simulated input combinations. Apply the
well-known least squaresalgorithm.

Then check if the estimated metamodel approximates the simulation model
adequately. Thatfit can be simply quantified through the well-known multiple correlation
coefficient R2. (A more complicated procedure is cross-validation; see Kleijnen and Van
Groenendaal, 1992).

If the fit is not good enough,transform the inputs; examples are the logarithmic
transformation (log x) and the inverse (1/x).

Once the fit of the approximation has been checked, study theindividual estimated
factor effectsβ1, β2, etc. Qualitative knowledge about the simulated module often suggests
that these effects should have specific signs; for example, deeper water gives a wider
sonar window (seeβ2 in the sonar window module below).

Experience shows that this methodology is flexible enough in practice.
[The importance of sensitivity analysis is also emphasized by Fossett, Harrison,

Weintrob, and Gass (1991, p. 719). They investigate three military case studies, but do not
present any details.]

Because of time constraints, only two modules are examined in the HUNTOP case
study: (i) sonar window, and (ii) visibility.

Sub (i) Sonar window module: The sonar window module has asresponsevariables
the minimum and maximum distances of the area on the sea bottom that is insonified by
the sonar beam.Factorsare selected as follows (this selection depends on prior knowledge
of the simulated system, not on mathematical statistics): the sonar rays hit the bottom
under the grazing angle (see §2), which is determined deterministically by three factors,
namely SVP denoted by x1, average water depth or x2, and tilt angle or x3. SVP is treated
as a qualitative factor.

As the first response variable (say) y take theminimumdistance from the sonar to
the insonified area on the sea bottom (actually the sonar position is projected onto the
imaginary flat sea bottom).

Specify a second-degree polynomial in x2 and x3 per SVP type (or x1 ’value’). Such
a polynomial seems a good compromise between a simple first-degree polynomial (which
misses interactions and has constant marginal effects) and a higher-order polynomial
(which is difficult to interpret and requires many more simulation runs).

To estimate the six regression parameters of this polynomial (Q = 6), use a
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classical central composite experimental design with nine input combinations (n = 9); also
see Kleijnen (1987) and Kleijnen and Van Groenendaal (1992).

The fitted second-degree polynomial turns out to give an acceptable approximation:
the multiple correlation coefficient R2 ranges between 0.96 and 0.98, for the four SVPs
simulated. (Otherwise, the regression variables x2 and x3 could have been transformed.)

Expert knowledge suggests that certain factor effects have specific signs:β2 > 0, β3

< 0, andβ23 < 0. The corresponding estimates turn out to have the correct signs. So this
module has the correct input/output behavior, and the validity of this module need not be
questioned.

[The pure quadratic effects are not significantly different from zero. So on
hindsight, simulation runs could have been saved, as there is no curvature in the response
surface. Once the simulation model has been validated, the signs of the effects in the
metamodel may also help the decision makers in the optimization of their policies; see
Kleijnen and Van Groenendaal (1992).]

For the second response,maximumdistance, similar results hold. The exception is
one SVP that results in an R2 of only 0.68 and a non-significantβ2.

Sub (ii) Visibility module: An object is visible if it is within the sonar window and
it is not concealed by the bottom profile. HUNTOP represents the bottom profile through a
simple geometric pattern, namely hills of fixed heights with constant upward slopes and
constant downward slopes. A fixed profile is used within a single simulation run. Intuitive-
ly, the orientation of the hills relative to the ship’s course and to the direction of the sonar
beam is important: does the sonar look down a valley or is its view blocked by a hill?

The responsevariable of this module is the time that the object is visible, express-
ed as a percentage of the time it would have been visible were the bottom flat (in which
case no concealment could occur). This response is random because the ship’s course
shows navigation error. Navigation error is modeled by a normal distribution with the
desired course over the track as the mean value.

Six inputs are varied: water depth, tilt angle, hill height, upward hill slope,
downward hill slope, and object’s position on the hill slope (top, bottom, or in between).
The SVP and the orientation of the bottom profile are kept constant. Navigation error is
eliminated in this sensitivity analysis (not in stage #2; see §3.2).

Again specify a quadratic metamodel for this module. To estimate the 28 regres-
sion parameters, use a central composite design with 77 input combinations. R2 turns out
to be 0.86. The upward hill slope has no significant effects: no main effect, no interactions
with the other factors, no pure quadratic effect. These results agree with the experts’
qualitative knowledge. So the validity of this module is not questioned either.

3.2 Real versus simulated detection probabilities

This subsection answers the questions: (i) what are the correct probabilities to be
estimated, and (ii) how can the estimated (correct) probabilities be compared statistically?

Sub (i) Relevant probabilities: Let M denote the number of mines in the simulated
mine field, and R the number of simulation runs. A simulation run is one voyage of the
ship over the whole mine field (see §2). During that run an individual mine is either
detected or not. So define thesimulation binary variables:

xij = 0 if simulated mine i is not detected in simulation run j
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(i = 1,..., M and j = 1,..., R); (1a)
xij = 1 if simulated mine i is detected in simulation run j. (1b)

This equation leads to the following definition of thesimulation detection probabilitypi

for mine i that holds for all simulation runs j:

P(xij = 1) = pi; (2a)
P(xij = 0) = 1 - pi. (2b)

Analogous to R, define K as the number of so-calledfield runs, which are per-
formed during a real mine sweep at sea (through a mine field that has been constructed for
research and training purposes). Assume that the number of simulated mines in the
validation stage (namely M) equals the number of mines in the field runs. (Once the
model is validated, the number of mines in the model can change.) Analogous to xij in (1),
define thereal-life binary variablesyik:

yik = 0 if real mine i is not detected in field run k
(i = 1,..., M and k = 1,..., K); (3a)
yik = 1 if real mine i is detected in field run k. (3b)

Analogous to (2), define thereal-life detection probabilityqi for mine i:

P(yik = 1) = qi; (4a)
P(yik = 0) = 1 - qi. (4b)

A major problem in this case study is the use of differentenvironmentsin the
simulation model and the field test respectively. Firstly, consider theSVPs. HUNTOP
uses crude approximations of the SVPs in the real world, namely simple piecewise-linear
functions, kept constant during the whole simulation run (see §2). The real SVPs are
poorly measured. Secondly, consider themine fields. In the real world, mines have loca-
tions that are not known exactly. So on one hand, an echo is not counted as a detection if
its origin is ’far’ away from the assumed locations of the real mines. On the other hand,
’false’ echoes (NOMBOs and spurious contrasts) are counted as detections if their origins
are close to the assumed location of a real mine.

So environmental conditions are uncertain in the real world, and they are crudely
represented in the model. Obviously, the modeled and the real detection probabilities
depend on uncertain but deterministic inputs such as the SVP and the mine field. These
inputs definescenarios. (These inputs must be distinguished from the stochastic inputs,
namely navigation error, spurious contrasts, and human performance; see §2.)

There are numerous scenarios, denoted by (say) Sh with h = 1, 2, ... Soanalogous
to xij in(1), define thescenario dependentsimulation binary variables:

xijh = 0 if simulated mine i is not detected in simulation run j under scenario h;
(5a)

xijh = 1 if simulated mine i is detected in simulation run j under scenario h. (5b)

Analogous to pi in (2), define simulation detection probabilities for mine i,conditional on
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scenario h:

P(xij = 1Sh) = pih. (6)

To estimate pih from R simulation runs, keep the scenario fixed at Sh and use
pseudorandom numbers to sample navigation errors, spurious contrasts, and human oper-
ator performance. This yields the estimator .p̂ih

To define qih, the real-life detection probability for mine iconditional on scenario
h, replace x by y in (6).

Obviously the conditional probabilities pih in (6) and the unconditional probability
pi in (2) are connected by

If it were desired to estimate this pi (the average over all scenarios), then scenarios would

(7)pi
h

P(x ij 1 Sh)P(S h)

be sampled too. In validation, however, theconditional probabilities pih and qih should be
compared, not the unconditional probabilities pi and qi, as Figure 1 demonstrates. In this
figure the conditional probabilities -simulated and real ones - depend on thescenario: pi1 >
pi2 and pi1 < pi3, while qi1 < qi2 < qi3. The figure also displays confidence intervals for the
corresponding estimators: see the vertical lines.

INSERT FIGURE 1 APPROXIMATELY HERE;
FIGURE 1 IS LAST PAGE OF MANUSCRIPT

At scenario S1 the model is not valid: the confidence intervals for pi1 and qi1 do not
overlap. At S2 the model is valid: the confidence intervals around pi2 and qi2 overlap
largely; that is, the real and simulated probabilities are the same, practically speaking. At
S3 the modelmight be acceptable, depending on the practical purpose of the simulation
study (also see the definition of validation in §1).

Suppose that the model is run with scenario S2 (see the confidence interval for pi2),
whereas the field test uses scenario S1 (see the interval for qi1). Then the model is incor-
rectly rejected (for S2 the model is valid).

So the validation procedure must estimate how much the simulated and the real de-
tection probabilities respond to different scenarios. If the detection probabilities are found
to be sensitive to the scenario,then scenarios must be measured accurately. If such mea-
surement is infeasible, only less stringent validation tests are possible (see §4.5).

[In queuing simulations, scenarios may correspond with traffic loads, and estimated
detection probabilities with average waiting times. Obviously, if the traffic load is not
measured, it is virtually impossible to validate the queueing model. Further, Figure 1
shows that the estimated simulation responses (here: ) may lie within the range of esti-p̂ih

mated real-life responses (here ), so without measurement of the scenario the modelq̂ih
cannot be rejected.]

The importance of the environment is also emphasized by Fossett et al. (1991, p.
714.). A similar issue is discussed, in the context of ecological models, by Fleming and
Schoemaker (1992). Also see the monograph by Knepell and Arangno (1993, p. 2-9).

In the practice of naval mine hunting, several field runs are made, each in a diffe-
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rent period. Measurements show that the SVPs (or scenarios) vary within a run; they also
vary from period to period.

The HUNTOP model turns out to give estimated detection probabilities for some
mines that arenot sensitive to the scenario: for some mines these probabilities are always
zero; for some other mines these probabilities are always one, whatever the scenario is.

Sub (ii) Statistical test: Once the simulated and the real detection probabilities are
obtained, it turns out that these estimates are not exactly the same. Is this difference to be
explained by noise or by a systematic deviation between model and reality, given a
specific scenario? In validation it is hoped that this difference is explained by noise,
practically speaking.

Mathematical statistics may be applied to obtain quantitative data about the quality
of a model (see §1). So specify thenull-hypothesis: the model and the real system give the
same detection probabilities under a specific scenario, for each mine. In symbols:

H0: pih = qih (i = 1, ..., M and h = 1, 2,...). (8)

The probabilities pih and qih are estimated, by simulation and by field runs respectively,
assuming the scenario can be fixed at Sh. First consider a single mine (say) mine i (after
equation 13 the case of more than one mine will follow).

The estimator R isbinomially distributed with parameters pih and R. (The Rp̂ih

simulation runs give independent responses, since xijh and xij’h are independent for j j’≠
where j and j’ run from 1 to R; however, the detection probabilities of mine i and i’ may
be dependent within the same run; this dependence will be taken care of in equation 15.)
So the variance of this binomial variable is

Analogously, the field runs give binomial variables K with parameters qih and K.

(9)var(ˆ pih ) pih (1 pih )/R.

q̂ih

The simulated and real estimators and are independent, because the simulationp̂ih q̂ih
outputs depend on pseudorandom numbers whereas the real outputs depend on completely
different random events.

Next consider thevariance of the difference under the hypothesis that thep̂ih q̂ih
simulated and the real probabilities are equal indeed (see equation 8). Denoting these
equal probabilities by rih gives

To estimate thiscommonparameter rih, use thepooledestimator or weighted average

(10)var(ˆ pih q̂ih pih qih r ih ) r ih (1 r ih )/R r ih (1 r ih )/K
r ih (1 r ih )(K R)/(R K).

Next remember the basic relation

(11)r̂ ih p̂ih R/(R K) q̂ih K/(R K).
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Finally, derive theunbiasedvariance estimator of :

(12)
E( r̂ 2

ih ) var(ˆ r ih ) [E(ˆ r ih )] 2 r ih (1 r ih )/(R K) r 2
ih .

p̂ih q̂ih

Obviously the hypothesis in (8) requires atwo-sided test.

(13)
ˆvar(ˆ pih q̂ih pih qih r ih )

r̂ ih (1 r̂ ih )(R K) 2/[(R K 1)(RK)].

Actually there areseveral mines: M > 1. Hence the null-hypothesis in (8) is a so-
called composite hypothesis, requiring simultaneous testing. Therefore applyBonferroni’s
inequality, which means that the hypothesis is rejected if one or more mines have
estimated simulation and real detection probabilities that differ significantly. Further, each
individual mine is tested at aper comparisonerror rate ofα/M where α denotes the
experimentwisetype I error rate. A typical value for thisα is 0.20 (independent of M).
Details are given in Kleijnen (1987, p. 42) and Miller (1981).

Notice that Bonferroni’s inequality permits the use of univariate techniques; so -
contrary to Balci (1995) statement- multivariate procedures are not a ’must’.

For convenience, approximate the distribution of the difference between two binomial
variables by aGaussian. Assume that this approximation is good enough, since the Central
Limit Theorem applies (see equation 14 below), and many other approximations are used
in the whole process of model building and validation. Also see §4.3.

Obviously, the estimated mean of this normal distribution is

The nuisance parameter, namely the variance of this normal distribution, is estimated

(14)p̂ih q̂ih

R

j 1

x ijh /R
K

k 1

y ikh /K.

through (13).
Let zα denote the ’upperα point’ or 1 - α quantile of the standard normal distribution.

Then reject the null-hypothesis in (8) if

Notice thatBonferroni’s inequalityapplies, even though the M estimated probabilities

(15)max
i

[ p̂ih q̂ih / v̂ar(ˆ pih q̂ih ) pih qih r ih )] > z α/M.

within a given simulation run aredependent. Indeed, if the operator is busy with one mine,
then there is a higher chance that he misses the next mine. Similarly the estimated
probabilities for various mines within a particular field test may be dependent.

It is well-known (see Balci 1995) that whentesting the validity of a model, there are
two classicalerror sources, namely the type I orα error and the type II orβ error:

α = probability of rejecting the model
if the model is valid; (16a)

β = probability of accepting the model
if the model is not valid. (16b)
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The β error probability increases as theα error probability decreases, given fixed sample
sizes (R and K). The complement of the type II error probability, 1 -β, is called thepow-
er of the test. This power increases, as themodel specification errorδ = |pih -qih| increases.
The power also increases as the sample sizes increase. Simulated sample sizes can be
large (here R); so it might seem that small, unimportant specification errorsδ will be
declared significant. However, the real sample sizes are always relatively small (here K),
so a model is rejected only if the specification errorδ is relatively large. Kleijnen (1995)
further discusses the appropriateness of statistical tests in validation; also see §4.4.

Unfortunately, theoutcomesof these validation tests can not be presented here, as
they are classified. The statistical analysis described above, deviates from the analyses
used in other naval studies. The latter studies are rather crude from the viewpoint of
mathematical statistics. Those analyses are confidential too, so details cannot be given.

4. Remaining Issues

Validation is a never-ending process: the environment keeps changing, so the model
must be updated and revalidated. Indeed, this case study concerns an ongoing modeling
effort at TNO-FEL (also see §4.7).

On the other hand, a validationproject has limited time and financial resources, so at
the end of the project there remain issues to be investigated. §4.1 through §4.6 discuss
issues that arise in the validation of simulation models in general, whereas §4.7 through
§4.13 examine validation problems that are specific for naval mine-hunting models.

Knepell and Arangno (1993) also discuss the ongoing character of validation and its
project character.

4.1 Screening

Sensitivity analysis was applied to only two modules (see §3.1). So not all 40 factors
of the total model were systematically investigated.Screeningof so many factors can be
done through the sequential technique based on aggregation, explained in Bettonvil and
Kleijnen (1994). This technique was applied to a military model by Leermakers (1993)
and to an ecological model by Bettonvil and Kleijnen (1994).

4.2 Risk analysis

Sensitivity analysis shows which inputs are really important. Collecting information
on those inputs is worthwhile. However, if it is impractical to collect reliable information
on those inputs, thenrisk analysismay be applied. In such an analysis, a probability distri-
bution of inputs is derived from the experts’ knowledge. Next Monte Carlo sampling
yields a probability distribution of output values. See Kleijnen (1994) and also Forrester
and Senge (1980, pp. 225-226).

4.3 Gaussian approximation

§3.2 used a Gaussian approximation for the distribution of thedifferencebetween two
binomial variables.

Brenner and Quan (1990) give an exact confidence intervals for a single binomial
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parameter p or q, not the difference p - q. They use the original binomial distribution, not
the Gaussian approximation. Moreover, they do not follow the traditional approach that
accounts for the discrete character of the binomial distribution and gives a conservative
confidence interval. Instead they follow a Bayesian approach, assuming no prior informa-
tion on the binomial parameter.

Louis (1981) discusses the special case of observing no successes (x = 0 or y = 0).

4.4 Type I and II errors

Given the sample sizes R and K, the type I error probabilityα, and the model errorδ,
it would be possible to compute theβ error probability; see §3.2. To decrease both error
probabilities, it is necessary to increase thesample sizes. In this case study, R (number of
simulation runs) may be increased; K (sample size of field test), however, is usually given.

4.5 Less stringent statistical validation

The null-hypothesis in (8) states that the simulated and the real detection probabilities
are equal. Now, however, hypothesize that theestimatedsimulation and real probabilities
are only positively correlated: if a mine has a relatively high estimated detection proba-
bility in the field run, then the estimated simulation probability should also be relatively
high.

To test this hypothesis formulate theregression model

where denotes ’white noise’ (independently distributed Gaussian noise with mean zero

(17)
p̂ih β0h β1hq̂ih ε ih

εih

and variance, say, ). So if scenarios are measured, then plot as a function of .σ2
h p̂ih q̂ih

Use ordinary least squares to estimate the intercept and slope of the straight line that
passes through the ’cloud’ of M points.

An ideal simulation model would mean that in this regression model the residuals are
zero ( = 0) so R2 is one, while the intercept is zero and the slope is one.εih

Of course, such an ideal model is utopian. Therefore formulate the newnull-hypothe-
sis

To test this hypothesis, use the standard t statistic that is given in any textbook on

(18)H0: β1h ≤ 0.

regression analysis. Soreject this null-hypothesis andacceptthe simulation model, if there
is strong evidence that the estimated simulation and real detection probabilities are posi-
tively correlated; see Kleijnen, Bettonvil, and Van Groenendaal (1995).

There would indeed be M points to estimate the regression model (17), if thescenario
could be kept constant during the whole field test. When scenarios are not fixed, then col-
lecting all data in a single diagram creates extra noise (technically, the index h is deleted
in equations 17 and 18).

The weaker validation requirement of this subsection makes sense if the model is used
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to predict relative responses (as is the case in sensitivity analysis of tactics and sonar de-
sign), not absolute responses (needed to gauge the ’huntability’ of a mine field). In the
latter situation, input data of higher accuracy are necessary.

4.6 Animation

Animation may be used to present the simulation model and its results; see Kleijnen
(1995) for references.

Animation may get naval experts involved in the model construction, verification,
validation, and operational implementation.

4.7 SVP

In this particular case study, the SVP is a factor that certainly requires more research.
In practice that factor is hard to measure sufficiently, since the SVP depends on time and
place. In the model the SVP is treated as aqualitative factor. Such a nominal scale indi-
cates lack of knowledge. Moreover, the simulation uses a single SVP per run, which is
certainly unrealistic.

It would be useful to develop a real-timemeasurement devicefor SVPs and to install
that device on board of the ship. Its measurements would provide time and space depen-
dent input to the simulation model, which would then become a decision support system
(DSS). The Dutch Navy has acknowledged this need and has proceeded to acquire such a
system.

Once the model is validated, it is a challenge to findrobust mine sweeping proce-
dures, which are not sensitive to the varying SVPs.

So validation must continue, as the model keeps changing (also see the beginning of
§4).

4.8 Sea bottom

The bottomprofile is another qualitative factor (see §4.7). The model uses a simple
geometric pattern, whereas the real bottom is erratic (fractiles might be used to model that
profile more realistically).

Moreover bottom type(sand, rock, etc.) is modeled crudely: bottom type is scaled
from one to four, whereas it is actually a qualitative factor.

4.9 Navigational error

The simulated navigational error was found not to have the desired mean. Therefore
navigational error may be modeled by specifyingpositive correlationas follows. Let yt
denote the actual ship’s position at time t and et the navigational error at that time. Then
specify

where the error forms a time series

(19)y t µ et
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where is the (positive) autocorrelation coefficient and zt denotes a normally indepen-

(20)et ρet 1 z t

ρ
dently distributed variable with mean zero and variance (say) such that et has theσ2

z

prespecified variance (see Kleijnen and Van Groenendaal, 1992); in other words, theσ2
e

ship’s position is a weighted average of the desired course µ and the previous position yt,
augmented with an independent normal error with zero mean:

(21)y t (1 ρ) µ ρyt 1 z t .

4.10 Measurement errors and data validity

Data validity in general is discussed in Knepell and Arangno (1993). In thefield runs
of this case study, a circle with a given radius is drawn around the location of the mine,
assuming that location is exactly known. For validation purposes, the mine is supposed to
be detected if and only if the operator records a contrast within that circle. Consequently,
if the operator sees a false contrast (minelike object or spurious contrast) that falls within
the circle, that echo is counted as a detection. On the other hand, a detection may be
recorded outside the circle, and then it is not counted.

This procedure may be refined by giving higherweights to a recorded detection, the
closer it lies to the true position of a mine. Until now weights were zero or one.

[That weight function could be some bivariate distribution with means equal to the
true coordinates and with such a shape that the weights decrease as specified by the naval
experts. For example, with 90% probability a mine may be counted as being detected, if a
recorded object lies no more than 20 meters from a true location. Multivariate distributions
of many shapes are surveyed in Johnson 1987.]

4.11 Mine classification and destruction

The current model ends at the phase of mine detection, excluding the follow-up opera-
tions of classification and destruction (see §2).

In practice, any contrast that the operator interprets as a mine (even if that detection is
caused by a minelike object or a spurious contrast) and that is ’close’ to an actual mine,
may become a success in the follow-up phase. However, calling ’mine!’ all the time
would generate a success probability of one; yet it would also waste much time and
energy in the follow-up phase (’Peter and the wolf’).

It seems better to separately measuretrue detections caused by whatever echo close to
the true location of a mine, andfalse detections caused by minelike objects and spurious
contrasts only (these detections resemble the type I and II errors in hypothesis testing; see
equation 16). True and false detections should be measured, not only in the field runs but
also in the simulation runs. In the current model, however, spurious contrasts are never
counted as successes.
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4.12 Other measures of effectiveness

This article has concentrated on the detection probabilities of the M individual mines;
in practice, however, other responses are also of interest.

A closely related measure is theaveragedetection probability perstrip (strips and
tracks were defined in §2). The detection probabilities are usually assumed to be the same
for all mines within the same strip.

The probabilities per strip can be further aggregated into theoverall detection proba-
bility for the whole mine field. Notice that in general, aggregation means loss of informa-
tion. However, the width of the strips is debatable.

[Naval experts are interested in thecharacteristic detection widthand thecharacte-
ristic detection probability, which they denote by A and B. They derive these quantities
from p(v), the function that expresses the detection probability p as a function of (say) v,
the athwart distance of the mine to the track. Obviously, this p(v) generally decreases as v
increases. They use the following equations to determine A and B:

To estimate these A and B, they process the estimated detection probabilities, once the

(22)

W ⌡
⌠
∞

∞

p(v)dv;

⌡
⌠
W1

W1

p(v)dv (2/3)W;

A 3W1; B W/A.

simulation has been finished. (The estimators of A and B are negatively correlated, since
B = W/A). They collect all M estimated probabilities of a particular field test ( ) andq̂i
their athwart distances (vi), ignoring measurement errors of v. Since they further ignore the
scenario (Sh), the resulting cloud of M observations (vi, ) is very erratic. It seems betterq̂i
to estimate ph(v) from the estimated probabilitiesper scenario; for example, a mine farther
away from the ship has a smaller detection probability,given a certain SVP. To validate
the simulated A and B, the actual scenarios should be measured in the field runs; see the
discussion of Figure 1. This estimation is possible, provided a real-time measurement
device is installed on board of the ship; see §4.7.]

4.13 Calibration

Improvements of the current model should make it possible to eliminate theartificial
calibration parameter, which was introduced to get better fit between simulated and field
results (see §2).

5. Summary and conclusions

This article discussed acase study, namely a simulation model of mine hunting at sea,
developed by TNO-FEL for the Dutch navy. This model, calledHUNTOP, includes the
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environment (namely, the mine field and acoustical characteristics of the sea water), the
sonar system, the ship’s course, and the human operator’s performance.

Simulation models can be validated intwo stages. Since no data were available for
individual modules of HUNTOP,sensitivity analysis per modulewas performed in stage
#1. This analysis can use experimental design theory and regression analysis. The results
for two modules (sonar window and object visibility) corroborate the validity of these
HUNTOP modules, since the input/output behavior of these modules agreed with the
experts’ qualitative knowledge.

In stage #2the model as a wholecan be validated. So simulated detection probabil-
ities were compared with real-life probabilities. A statistic was derived to test the null-
hypothesis of equal expectations for estimated simulated and real probabilities. It was
emphasized that it is important to measure the environmentalscenarios that drive the
simulation and the field test respectively.

Finally a review followed, discussingremaining issuesin the validation of simulation
models in general and in naval mine-hunting models in particular.
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