1,406 research outputs found

    Towards automated test and validation of SIP solutions

    Get PDF
    IP networks are currently the major communication infrastructure used by an increasing number of applications and heterogeneous services, including voice services. In this context, the Session Initiation Protocol (SIP) is a signaling protocol widely used for controlling multimedia communication sessions such as voice or video calls over IP networks, thus performing vital functions in an extensive set of public and enter- prise solutions. However, the SIP protocol dissemination also entails some challenges, such as the complexity associated with the testing/validation processes of IMS/SIP networks. As a consequence, manual IMS/SIP testing solutions are inherently costly and time consuming tasks, being crucial to develop automated approaches in this specific area. In this perspective, this article presents an experimental approach for automated testing/validation of SIP scenarios in IMS networks. For that purpose, an automation framework is proposed allowing to replicate the configuration of SIP equipment from the pro- duction network and submit such equipment to a battery of tests in the testing network. The proposed solution allows to drastically reduce the test and validation times when compared with traditional manual approaches, also allowing to enhance testing reliability and coverage. The automation framework comprises of some freely available tools which are conveniently integrated with other specific modules implemented within the context of this work. In order to illustrate the advantages of the proposed automated framework, a real case study taken from a PT Inovação customer is presented comparing the time required to perform a manual SIP testing approach with the one time required when using the proposed auto- mated framework. The presented results clearly corroborate the advantages of using the presented framework.This work has been supported by FCT - Fundação para a CiĂȘncia e Tecnologia within the Project Scope: PEstOE/EEI/UI0319/2014. This research work was developed within the collaboration of PT Inovação (http://www.ptinovacao.pt/ en/)

    Effective Performance Metrics for Multimedia Mission-critical Communication Systems

    Get PDF

    A solution for transparent mobility with route optimization in the IP multimedia subsystem

    Get PDF
    This paper presents TRIM+, an architecture for transparent mobility management with route optimization in IMS based networks. The design of our architecture is based on a previous work referred to as TRIM. TRIM was originally devised to provide transparent mobility support in the IMS, although transparency came at the cost of using a suboptimal data path between communicating end points. TRIM+ maintains transparency as a design criterium, and thus end-user applications, running at the mobile node and its correspondent communication peers, are unaware of mobility management procedures. Additionally, the proposed design defines a set of route optimization procedures, allowing compliant devices to use the optimal data path for media communications. Furthermore, TRIM+ addresses packet loss management in scenarios where the media path cannot be maintained during the handover of the MN. To this end, our architecture enables the MN to request buffering capacity in its home network to temporarily store incoming media traffic during the handover, which would otherwise be dropped. This mechanism, as well as route optimization procedures, are executed transparently to the end-user applications running at the communicating end points. As a proof-of-concept, we have implemented a software prototype of the TRIM+ architecture, deploying it over a real IMS testbed. By means of a set of experiments, we have validated the mechanisms proposed in this paper, considering both UDP and TCP user traffic.This article has been partially granted by the Madrid Commu nity through the MEDIANET project (S 2009/TIC 1468), and by the European Community through the CROWD project (FP7 ICT 318115). The work of Ignacio Soto has been partially sup ported through the I MOVING project (TEC2010 18907).Publicad

    Protocols, performance assessment and consolidation on interfaces for standardization – D3.3

    Get PDF
    The following document presents a detailed description of the protocol for the “ Control Channels for the Cooperation of the Cognitive Management System ” (C4MS) which provides the necessary means to enable proper management of Opportunistic Networks. Additionally, the document defines the methodology that was applied for the purpose of signalling evaluation. The protocol overview presented in section 2 of the main document, provides the C4MS principles. The section includes, among others, the description of the protocol identifiers, procedures, protocol state machines and message format as well as the security asp ects. Section 3 provides a high-level description of the data structures defined within the scope of OneFIT project. The data structures are classified into five categories, i.e.: Profiles, Context, Decisions,Knowledge and Policies. The high level description is complemented by some detailed data structures in the Appendix to D3.3 Section 3[10]. Section 4 provides details on the evaluation methodology applied for the purpose of C4MS performance assessment. The section presents the evaluation plan along with a description of metrics that are to be exploited in the scope of WP3. Section 5 and Section 6 are composed of the signalling evaluation results. Section 5 focuses on the estimation of the signalling load imposed by ON management in different ON phases. Additionally some results for the initialization phase (not explicitly mentioned in the previous phases of the project)and security related aspects are also depicted. Section 6 on the other hand is focused on the evaluation of the signalling traffic generated by different ON related algorithms. Conclusions to the document are drawn in section 7. Detailed description of the C4MS procedures, implementation options based on IEEE 802.21, DIAMTER and 3GPP are depicted in the appendix to the D3.3[10] . Additionally, the appendix incorporates the detailed definition of the information data structures and final set of Message Sequence Charts (MSCs) provided for the OneFIT project.Peer ReviewedPreprin

    Design and implementation aspects of open source next generation networks (NGN) test-bed software toolkits

    Get PDF
    Informations- und Kommunikationstechnologien bilden seit langem das immer wichtiger werdende RĂŒckgrat der weltweiten Wirtschaft und Telekommunikation, in der speziell Telekommunikationsnetze und -dienste einen elementaren Anteil tragen. Durch die Konvergenz von Telekommunikations- und Internettechnologien hat sich die Telekommunikationslandschaft in der letzten Dekade drastisch verĂ€ndert. Bislang geschlossene Telekommunikationsumgebungen haben sich imWandel zum sogenannten Next Generation Network (NGN) hinsichtlich unterstĂŒtzter Zugangsnetztechnologien und angebotener multimedialer Anwendungen sowie der eingesetzten Protokolle und Dienste zu komplexen, hochdynamischen, Multi-Service Infrastrukturen gewandelt. Die Kontrollschicht solcher NGNs ist dabei von ĂŒbergeordneter Bedeutung, da diese zwischen den Zugangsnetzen und den Anwendungen sitzt. Der Einsatz und die Optimierung des IP-Multimedia Subsystem (IMS) wurde in diesem Kontext Jahrelang erforscht und diskutiert und es reprĂ€sentiert heute die weltweit anerkannte Kontrollplattform fĂŒr feste und mobile Telekommunikationsnetze. Die Forschung an Protokollen und Diensten in diesen NGN Umgebungen ist aufgrund der Konvergenz von Technologien, Anwendungen und Business Modellen sowie der hohen Dynamik aber kurzen Innovationszyklen hochkomplex. Der frĂŒhzeitigen Zugang zu herstellerunabhĂ€ngigen – aber dicht an der Produktwelt angelehnten - Validierungsinfrastrukturen, sogenannten offenen Technologietest-beds, kurz Test-beds, ist daher fĂŒr Forschungs- und Entwicklungsabteilungen unerlĂ€sslich Die vorliegende Dissertation beschreibt die umfangreiche Forschungsarbeit des Autors auf dem Gebiet der offenen NGN Test-beds ĂŒber die letzten neun Jahre und konzentriert sich dabei auf Entwurf, Entwicklung und Bereitstellung des Open Source IMS Core Projekt, das seit Jahren die Grundlage fĂŒr eine Vielzahl von NGN Test-beds und zahllose NGN Forschungs- und Entwicklungsprojekte im akademischen als auch Industrienahen Umfeld rund um den Globus darstellt. Dabei wird ein großer Schwerpunkt auf die Anforderungen hinsichtlich FlexibilitĂ€t, Leistung, FunktionalitĂ€tsumfang und InteroperabilitĂ€t, sowie elementare Designprinzipien von Test-bedwerkzeugen gelegt. Die Arbeit beschreibt und bewertet darĂŒberhinaus den Einsatz von Open Source Prinzipien und veranschaulicht die Vorteile dieses Ansatzes hinsichtlich Einfluss und Nachhaltigkeit der Forschung anhand des Aufbaus einer globalen Open Source IMS Core (OpenIMSCore) Forschungs-Community. Außerdem veranschaulicht die Arbeit zum Ende die Wiederverwendbarkeit der wesentlichen angewendeten Designprinzipien an anderen maßgeblich durch den Autor entwickelten Test-bed Werkzeugen, insbesondere dem Open Evolved Packet Core (OpenEPC) fĂŒr die nahtlose Integration verschiedener Breitbandnetztechnologien.Information and Communication Technologies provide for a long time already the backbone of telecommunication networks, such that communication services represent an elementary foundation of today’s globally connected economy. The telecommunication landscape has experienced dramatic transformations through the convergence of the Telecom and the Internet worlds. The previously closed telecommunication domain is currently transforming itself through the so-called NGN evolution into a highly dynamic multiservice infrastructure, supporting rich multimedia applications, as well as providing comprehensive support for various access technologies. The control layer of such NGNs is then of paramount importance, as representing the convergent mediator between access and services. The use and the optimization of the IP-Multimedia Subsystem (IMS) was researched and considered in this domain for many years now, such that today it represents the world-wide recognized control platform for fixed and mobile NGNs. Research on protocols and services for such NGN architectures, due to the convergence of technologies, applications and business models, as well as for enabling highly dynamic and short innovation cycles, is highly complex and requires early access to vendor independent - yet close to real life systems - validation environments, the so-called open technology test-beds. The present thesis describes the extensive research of the author over the last nine years in the field of open NGN test-beds. It focuses on the design, development and deployment of the Open Source IMS Core project, which represents since years the foundation of numerous NGN test-beds and countless NGN Research & Development projects in the academia as well as the industry domain around the globe. A major emphasis is given for ensuring flexibility, performance, reference functionality and inter-operability, as well as satisfying elementary design principles of such test-bed toolkits. The study also describes and evaluates the use of Open Source principles, highlighting the advantages of using it in regard to the creation, impact and sustainability of a global OpenIMSCore research community. Moreover, the work documents that the essential design principles and methodology employed can be reused in a generic way to create test-bed toolkits in other technology domains. This is shown by introducing the OpenEPC project, which provides for seamless integration of different mobile broadband technologies

    A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

    Get PDF
    The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as: To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as: The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment. The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform. The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management. This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks. As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use

    Implementation and Performance Evaluation of an NGN prototype using WiMax as an Access Technology

    Get PDF
    Telecommunications networks have evolved to IP-based networks, commonly known as Next Generation Networks (NGN). The biggest challenge in providing high quality realtime multimedia applications is achieving a Quality of Service (QoS) consistent with user expectations. One of the key additional factors affecting QoS is the existence of different QoS mechanisms on the heterogeneous technologies used on NGN platforms. This research investigates the techniques used to achieve consistent QoS on network technologies that use different QoS techniques. Numerous proposals for solving the end-to-end QoS problem in IP networks have adopted policy-based management, use of signalling protocols for communicating applications QoS requirements across different Network Elements and QoS provisioning in Network Elements. Such solutions are dependent on the use of traffic classification and knowledge of the QoS requirements of applications and services on the networks. This research identifies the practical difficulties involved in meeting the QoS requirements of network traffic between WiMax and an IP core network. In the work, a solution based on the concept of class-of-service mapping is proposed. In the proposed solution, QoS is implemented on the two networks and the concept of class-of-service mapping is used to integrate the two QoS systems. This essentially provides consistent QoS to applications as they traverse the two network domains and hence meet end-user QoS expectations. The work is evaluated through a NGN prototype to determine the capabilities of the networks to deliver real-time media that meets user expectations

    Convergence: the next big step

    Get PDF
    Recently, web based multimedia services have gained popularity and have proven themselves to be viable means of communication. This has inspired the telecommunication service providers and network operators to reinvent themselves to try and provide value added IP centric services. There was need for a system which would allow new services to be introduced rapidly with reduced capital expense (CAPEX) and operational expense (OPEX) through increased efficiency in network utilization. Various organizations and standardization agencies have been working together to establish such a system. Internet Protocol Multimedia Subsystem (IMS) is a result of these efforts. IMS is an application level system. It is being developed by 3GPP (3rd Generation Partnership Project) and 3GPP2 (3rd Generation Partnership Project 2) in collaboration with IETF (Internet Engineering Task Force), ITU-T (International Telecommunication Union – Telecommunication Standardization Sector), and ETSI (European Telecommunications Standards Institute) etc. Initially, the main aim of IMS was to bring together the internet and the cellular world, but it has extended to include traditional wire line telecommunication systems as well. It utilizes existing internet protocols such as SIP (Session Initiation Protocol), AAA (Authentication, Authorization and Accounting protocol), and COPS (Common Open Policy Service) etc, and modifies them to meet the stringent requirements of reliable, real time communication systems. The advantages of IMS include easy service quality management (QoS), mobility management, service control and integration. At present a lot of attention is being paid to providing bundled up services in the home environment. Service providers have been successful in providing traditional telephony, high speed internet and cable services in a single package. But there is very little integration among these services. IMS can provide a way to integrate them as well as extend the possibility of various other services to be added to allow increased automation in the home environment. This thesis extends the concept of IMS to provide convergence and facilitate internetworking of the various bundled services available in the home environment; this may include but is not limited to communications (wired and wireless), entertainment, security etc. In this thesis, I present a converged home environment which has a number of elements providing a variety of communication and entertainment services. The proposed network would allow effective interworking of these elements, based on IMS architecture. My aim is to depict the possible advantages of using IMS to provide convergence, automation and integration at the residential level

    Registry composition in ambient networks

    Get PDF
    Ambient Networks (AN) is a new networking concept for beyond 3G. It is a product of the European Union's Sixth Framework Program (FP6). Network composition is a core concept of ANs. It allows dynamic, scalable and uniform cooperation between heterogeneous networks. ANs can host various registries. These registries may be of different types (e.g. centralized, distributed), store heterogeneous types of information (e.g. raw data vs. aggregated data), and rely on different interfaces to access the stored information (i.e. protocols or programming interfaces). When ANs compose, the hosted registries need to compose. Registry composition is a sub-process of network composition. It provides seamless and autonomous access to the content of all of the registries in the composed network. This thesis proposes a new architecture for registry composition in ANs. This overall architecture is made up of four components: interface interworking, data interworking, negotiation and signaling. Interface interworking enables dynamic intercommunication between registries with heterogeneous interfaces. Data interworking involves dynamically overcoming data heterogeneity (e.g. format and granularity). Interface and data interworking go beyond static interworking using gateways, as done today. The negotiation component allows the negotiation of the composition agreement. Signaling coordinates and regulates the negotiation and the execution of the composition agreement. Requirements are derived and related work is reviewed. We propose a new functional entity and a new procedure to orchestrate the composition process. We also propose a new architecture for interface interworking, based on a peer to peer overlay network. We have built a proof-of-concept prototype. The interface-interworking component is used as the basis of our new architecture to data interworking. This architecture reuses mechanisms and algorithms from the federated data base area. The thesis proposes as well a new architecture for on-line negotiation. The architecture includes a template for composition agreement proposals, and a negotiation protocol that was validated using SPIN. A new signaling framework is also proposed. It is based on the IETF Next Step in Signaling (NSIS) framework and was validated using OPNET. Most of these contributions are now part of the AN concept, as defined by the European Union's Sixth Framework Progra
    • 

    corecore