27 research outputs found

    Using neuro-IS/ consumer neuroscience tools to study healthy food choices: a review

    Get PDF
    Dietary choices are one of the main drivers of preventable health issues such as obesity or diabetes. Food choice is a complex behavior that is hard to measure with traditional, paper, and pencil-based methods. Neuro-Information Systems (NeuroIS) research is well suited to examine neurophysiological and psychophysiological processes behind complex food choices. This paper aims to scrutinize the feasibility of applying NeuroIS tools in healthy food research. We argue that the most important food choices are made in extra-laboratory conditions–mostly grocery stores. Thus, mobile EEG and eye-tracking seem to be the most promising research tools in this context. Surprisingly, there are only a few EEG and eye-tracking studies on healthy food choices held in extra-laboratory conditions. We discuss this phenomenon and propose future research directions to fit this gap in the literature.publishedVersio

    Surface Laplacian of Central Scalp Electrical Signals is Insensitive to Muscle Contamination

    Get PDF
    Author version made available in accordance with the publisher's policy. "(c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Abstract—Objective: To investigate the effects of surface Laplacian processing on gross and persistent electromyographic (EMG) contamination of electroencephalographic (EEG) signals in electrical scalp recordings. Methods: We made scalp recordings during passive and active tasks, on awake subjects in the absence and in the presence of complete neuromuscular blockade. Three scalp surface Laplacian estimators were compared to left ear and common average reference (CAR). Contamination was quantified by comparing power after paralysis (brain signal, B) with power before paralysis (brain plus muscle signal, B+M). Brain:Muscle (B:M) ratios for the methods were calculated using B and differences in power after paralysis to represent muscle (M). Results: There were very small power differences after paralysis up to 600 Hz using surface Laplacian transforms (B:M> 6 above 30 Hz in central scalp leads). Conclusions: Scalp surface Laplacian transforms reduce muscle power in central and peri-central leads to less than one sixth of the brain signal, 2-3 times better signal detection than CAR. Significance: Scalp surface Laplacian transformations provide robust estimates for detecting high frequency (gamma) activity, for assessing electrophysiological correlates of disease, and also for providing a measure of brain electrical activity for use as a ‘standard’ in the development of brain/muscle signal separation methods

    A real-time noise cancelling EEG electrode employing Deep Learning

    Get PDF
    Two major problems of head worn electroencephalogram (EEG) are muscle and eye-blink artefacts, in particular in non-clinical environments while performing everyday tasks. Current artefact removal techniques such as principle component analysis (PCA) or independent component analysis (ICA) take signals from a high number of electrodes and separate the noise from the signal by processing them offline in a computationally expensive and slow way. In contrast, we present a smart compound electrode which is able to learn in real-time to remove artefacts. The smart 3D printed electrode consists of a central electrode and a ring electrode where poly-lactate acid (PLA) was used for the the base and Ag/AgCl for the conductive parts allowing standard manufacturing processes. A new deep learning algorithm then learns continuously to remove both eye-blink and muscle artefacts which combines the real-time capabilities of adaptive filters with the power of deep neural networks. The electrode setup together with the deep learning algorithm increases the signal to noise ratio of the EEG in average by 20 dB. Our approach offers a simple 3D printed design in combination with a real-time algorithm which can be integrated into the electrode itself. This electrode has the potential to provide high quality EEG in non-clinical and consumer applications, such as sleep monitoring and brain-computer interface (BCI).Comment: 12 pages, 4 figures, code available under http://doi.org/10.5281/zenodo.413110

    A Brief Summary of EEG Artifact Handling

    Get PDF
    There are various obstacles in the way of use of EEG. Among these, the major obstacles are the artifacts. While some artifacts are avoidable, due to the nature of the EEG techniques there are inevitable artifacts as well. Artifacts can be categorized as internal/physiological or external/non-physiological. The most common internal artifacts are ocular or muscular origins. Internal artifacts are difficult to detect and remove, because they contain signal information as well. For both resting state EEG and ERP studies, artifact handling needs to be carefully carried out in order to retain the maximal signal. Therefore, an effective management of these inevitable artifacts is critical for the EEG based researches. Many researchers from various fields studied this challenging phenomenon and came up with some solutions. However, the developed methods are not well known by the real practitioners of EEG as a tool because of their limited knowledge about these engineering approaches. They still use the traditional visual inspection of the EEG. This work aims to inform the researchers working in the field of EEG about the artifacts and artifact management options available in order to increase the awareness of the available tools such as EEG preprocessing pipelines

    Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    Get PDF
    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters

    A Riemannian Modification of Artifact Subspace Reconstruction for EEG Artifact Handling

    Get PDF
    Artifact Subspace Reconstruction (ASR) is an adaptive method for the online or offline correction of artifacts comprising multichannel electroencephalography (EEG) recordings. It repeatedly computes a principal component analysis (PCA) on covariance matrices to detect artifacts based on their statistical properties in the component subspace. We adapted the existing ASR implementation by using Riemannian geometry for covariance matrix processing. EEG data that were recorded on smartphone in both outdoors and indoors conditions were used for evaluation (N = 27). A direct comparison between the original ASR and Riemannian ASR (rASR) was conducted for three performance measures: reduction of eye-blinks (sensitivity), improvement of visual-evoked potentials (VEPs) (specificity), and computation time (efficiency). Compared to ASR, our rASR algorithm performed favorably on all three measures. We conclude that rASR is suitable for the offline and online correction of multichannel EEG data acquired in laboratory and in field conditions

    Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts.</p> <p>Methods</p> <p>We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects.</p> <p>Results</p> <p>Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<it><</it>10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components.</p> <p>Conclusions</p> <p>We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.</p
    corecore