4 research outputs found

    Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models

    Full text link
    The correct choice of interface conditions and effective parameters for coupled macroscale free-flow and porous-medium models is crucial for a complete mathematical description of the problem under consideration and for accurate numerical simulation of applications. We consider single-fluid-phase systems described by the Stokes-Darcy model. Different sets of coupling conditions for this model are available. However, the choice of these conditions and effective model parameters is often arbitrary. We use large scale lattice Boltzmann simulations to validate coupling conditions by comparison of the macroscale simulations against pore-scale resolved models. We analyse two settings (lid driven cavity over a porous bed and infiltration problem) with different geometrical configurations (channelised and staggered distributions of solid grains) and different sets of interface conditions. Effective parameters for the macroscale models are computed numerically for each geometrical configuration. Numerical simulation results demonstrate the sensitivity of the coupled Stokes-Darcy problem to the location of the sharp fluid-porous interface, the effective model parameters and the interface conditions

    Modeling the wetting behavior of grinding wheels

    Get PDF
    Helical flute grinding is an important process step in the manufacturing of cylindrical cemented carbide tools where the use of cooling lubricants is a defining factor determining process performance. Finding optimal parameters and cooling conditions for the efficient use of lubricant is essential in reducing energy consumption and in controlling properties of the boundary zone like residual stresses. Any mathematical model describing the interactions between grinding wheel, lubricant and workpiece during the process has to account for the complex microstructure of the wheel; however, this renders the identification of parameters like slip or heat exchange coefficients numerically prohibitively expensive. In this paper, results from grinding oil droplet experiments are compared with simulation results for the wetting behavior of grinding wheels. More specifically, finite element simulations of the thin-film equation are used to identify slip parameters for different grinding wheel specifications (grain size, bonding structure, wetting status). Our results show that both the bonding and the grain size have an influence on the wetting behavior. The slip parameters that we identified account for the fluid-microstructure interactions and will be used to effectively model those interactions in more complex 3D fluid-dynamic simulations via the Beavers-Joseph condition

    Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models

    No full text
    The correct choice of interface conditions and effective parameters for coupled macroscale free-flow and porous-medium models is crucial for a complete mathematical description of the problem under consideration and for accurate numerical simulation of applications. We consider single-fluid-phase systems described by the Stokes–Darcy model. Different sets of coupling conditions for this model are available. However, the choice of these conditions and effective model parameters is often arbitrary. We use large-scale lattice Boltzmann simulations to validate coupling conditions by comparison of the macroscale simulations against pore-scale resolved models. We analyse three settings (lid-driven cavity over a porous bed, infiltration problem and general filtration problem) with different geometrical configurations (channelised and staggered distributions of solid grains) and different sets of interface conditions. Effective parameters for the macroscale models (permeability tensor, boundary layer constants) are computed numerically for each geometrical configuration. Numerical simulation results demonstrate the sensitivity of the coupled Stokes–Darcy problem to the location of the sharp fluid–porous interface, the effective model parameters and the interface conditions.Bundesministerium für Bildung und Forschung https://doi.org/10.13039/501100002347Deutsche Forschungsgemeinschaft (DE)Deutsche Forschungsgemeinschaft (DE)Bundesministerium für Bildung und Forschung (DE
    corecore