4,227 research outputs found

    Color structures and permutations

    Full text link
    Color structures for tree level scattering amplitudes in gauge theory are studied in order to determine the symmetry properties of the color-ordered sub-amplitudes. We mathematically formulate the space of color structures together with the action of permuting external legs. The character generating functions are presented from the mathematical literature and we determine the decomposition into irreducible representations. Mathematically, free Lie algebras and the Lie operad are central. A study of the implications for sub-amplitudes is initiated and we prove directly that both the Parke-Taylor amplitudes and Cachazo-He-Yuan amplitudes satisfy the Kleiss-Kuijf relations.Comment: 22 pages. v2: minor changes. v3: JHEP published version. Additional examples and explanation

    A rule of thumb for riffle shuffling

    Full text link
    We study how many riffle shuffles are required to mix n cards if only certain features of the deck are of interest, e.g. suits disregarded or only the colors of interest. For these features, the number of shuffles drops from 3/2 log_2(n) to log_2(n). We derive closed formulae and an asymptotic `rule of thumb' formula which is remarkably accurate.Comment: 27 pages, 5 table

    Hopf algebras in dynamical systems theory

    Full text link
    The theory of exact and of approximate solutions for non-autonomous linear differential equations forms a wide field with strong ties to physics and applied problems. This paper is meant as a stepping stone for an exploration of this long-established theme, through the tinted glasses of a (Hopf and Rota-Baxter) algebraic point of view. By reviewing, reformulating and strengthening known results, we give evidence for the claim that the use of Hopf algebra allows for a refined analysis of differential equations. We revisit the renowned Campbell-Baker-Hausdorff-Dynkin formula by the modern approach involving Lie idempotents. Approximate solutions to differential equations involve, on the one hand, series of iterated integrals solving the corresponding integral equations; on the other hand, exponential solutions. Equating those solutions yields identities among products of iterated Riemann integrals. Now, the Riemann integral satisfies the integration-by-parts rule with the Leibniz rule for derivations as its partner; and skewderivations generalize derivations. Thus we seek an algebraic theory of integration, with the Rota-Baxter relation replacing the classical rule. The methods to deal with noncommutativity are especially highlighted. We find new identities, allowing for an extensive embedding of Dyson-Chen series of time- or path-ordered products (of generalized integration operators); of the corresponding Magnus expansion; and of their relations, into the unified algebraic setting of Rota-Baxter maps and their inverse skewderivations. This picture clarifies the approximate solutions to generalized integral equations corresponding to non-autonomous linear (skew)differential equations.Comment: International Journal of Geometric Methods in Modern Physics, in pres

    A regular viewpoint on processes and algebra

    Get PDF
    While different algebraic structures have been proposed for the treatment of concurrency, finding solutions for equations over these structures needs to be worked on further. This article is a survey of process algebra from a very narrow viewpoint, that of finite automata and regular languages. What have automata theorists learnt from process algebra about finite state concurrency? The title is stolen from [31]. There is a recent survey article [7] on finite state processes which deals extensively with rational expressions. The aim of the present article is different. How do standard notions such as Petri nets, Mazurkiewicz trace languages and Zielonka automata fare in the world of process algebra? This article has no original results, and the attempt is to raise questions rather than answer them
    • …
    corecore