782 research outputs found

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte

    Mass Degeneracies In Self-Dual Models

    Full text link
    An algebraic restriction of the nonabelian self-dual Chern-Simons-Higgs systems leads to coupled abelian models with interesting mass spectra. The vacua are characterized by embeddings of SU(2)SU(2) into the gauge algebra, and in the broken phases the gauge and real scalar masses coincide, reflecting the relation of these self-dual models to N=2N=2 SUSY. The masses themselves are related to the exponents of the gauge algebra, and the self-duality equation is a deformation of the classical Toda equations.Comment: 10 pages LaTeX (previous copy truncated

    Self-Dual Chern-Simons Theories

    Get PDF
    In these lectures I review classical aspects of the self-dual Chern-Simons systems which describe charged scalar fields in 2+12+1 dimensions coupled to a gauge field whose dynamics is provided by a pure Chern-Simons Lagrangian. These self-dual models have one realization with nonrelativistic dynamics for the scalar fields, and another with relativistic dynamics for the scalars. In each model, the energy density may be minimized by a Bogomol'nyi bound which is saturated by solutions to a set of first-order self-duality equations. In the nonrelativistic case the self-dual potential is quartic, the system possesses a dynamical conformal symmetry, and the self-dual solutions are equivalent to the static zero energy solutions of the equations of motion. The nonrelativistic self-duality equations are integrable and all finite charge solutions may be found. In the relativistic case the self-dual potential is sixth order and the self-dual Lagrangian may be embedded in a model with an extended supersymmetry. The self-dual potential has a rich structure of degenerate classical minima, and the vacuum masses generated by the Chern-Simons Higgs mechanism reflect the self-dual nature of the potential.Comment: 42 pages LaTe

    The Chern-Simons Coefficient in the Higgs Phase

    Full text link
    We study one-loop corrections to the Chern-Simons coefficient κ\kappa in abelian self-dual Chern-Simons Higgs systems and their N=2N=2 and N=3N=3 supersymmetric generalizations in both symmetric and asymmetric phases. One-loop corrections to the Chern-Simons coefficient of these systems turn out to be integer multiples of 1/4π1/4\pi in both phases. Especially in the maximally supersymmetric N=3N=3 case, the correction in symmetric phase vanishes and that in asymmetric phase is κ/(2π∣κ∣)\kappa/(2\pi |\kappa|). Our results suggest that nonabelian self-dual systems might enjoy similar features. We also discuss various issues arising from our results.Comment: 10 pages, phyzzx macro, CU-TP-647 and SNUTP94-7

    Self-DUal SU(3) Chern-Simons Higgs Systems

    Get PDF
    We explore self-dual Chern-Simons Higgs systems with the local SU(3)SU(3) and global U(1)U(1) symmetries where the matter field lies in the adjoint representation. We show that there are three degenerate vacua of different symmetries and study the unbroken symmetry and particle spectrum in each vacuum. We classify the self-dual configurations into three types and study their properties.Comment: Columbia Preprint CU-TP-635, 19 page

    Maxwell Chern-Simons Solitons from Type IIB String Theory

    Get PDF
    We study various three-dimensional supersymmetric Maxwell Chern-Simons solitons by using type IIB brane configurations. We give a systematic classification of soliton spectra such as topological BPS vortices and nontopological vortices in N=2,3\mathcal{N}=2,3 supersymmetric Maxwell Chern-Simons system via the branes of type IIB string theory. We identify the brane configurations with the soliton spectra of the field theory and obtain a nice agreement with field theory aspects. We also discuss possible brane constructions for BPS domain wall solutions.Comment: 23 pages, Latex, 4 figures; (q_1,q_2)-string convention changed, minor correction

    Multiple Membranes in M-theory

    Get PDF
    We review developments in the theory of multiple, parallel membranes in M-theory. After discussing the inherent difficulties pertaining to a maximally supersymmetric lagrangian formulation with the appropriate field content and symmetries, we discuss how introducing the concept of 3-algebras allows for such a description. Different choices of 3-algebras lead to distinct classes of 2+1 dimensional theories with varying degrees of supersymmetry. We then describe how these are equivalent to a type of conventional superconformal Chern-Simons gauge theories at level k, coupled to bifundamental matter. Analysing the physical properties of these theories leads to the identification of a certain subclass of models with configurations of M2-branes in Z_k orbifolds of M-theory. In addition these models give rise to a whole new sector of the gauge/gravity duality in the form of an AdS_4/CFT_3 correspondence. We also discuss mass deformations, higher derivative corrections as well as the possibility of extracting information about M5-brane physics.Comment: 180 pages, 3 figures, Latex; v2: various typos corrected, clarifications, references and acknowledgements added, title modified, submitted to Physics Report

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio
    • …
    corecore