21,448 research outputs found
A Survey On Multi Trip Vehicle Routing Problem
The vehicle routing problem (VRP) and its variants are well known and greatly explored in the transportation literature. The vehicle routing problem can be considered as the scheduling of vehicles (trucks) to a set of customers under various side constraints. In most studies, a fundamental assumption is that a vehicle dispatched for service finishes its duty in that scheduling period after it returns back to the depot. Clearly, in many cases this assumption may not hold. Thus, in the last decade some studies appeared in the literature where this basic assumption is relaxed, and it is allowed for a vehicle to make multiple trips per period. We consider this new variant of the VRP an important one with direct practical impact. In this survey, we define the vehicle routing problem with multiple trips, define the current state-of-the-art, and report existing results from the current literature
Efficient heuristic algorithms for location of charging stations in electric vehicle routing problems
Indexación: Scopus.This work has been partially supported by CONICYT FONDECYT by grant 11150370, FONDEF IT17M10012 and the “Grupo de Logística y Transporte” at the Universidad del Bío-Bío.. This support is gratefully acknowledged.Eco-responsible transportation contributes at making a difference for companies devoted to product delivery operations. Two specific problems related to operations are the location of charging stations and the routing of electric vehicles. The first one involves locating new facilities on potential sites to minimise an objective function related to fixed and operational opening costs. The other one, electric vehicle routing problem, involves the consolidation of an electric-type fleet in order to meet a particular demand and some guidelines to optimise costs. It is determined by the distance travelled, considering the limited autonomy of the fleet, and can be restored by recharging its battery. The literature provides several solutions for locating and routing problems and contemplates restrictions that are closer to reality. However, there is an evident lack of techniques that addresses both issues simultaneously. The present article offers four solution strategies for the location of charging stations and a heuristic solution for fleet routing. The best results were obtained by applying the location strategy at the site of the client (relaxation of the VRP) to address the routing problem, but it must be considered that there are no displacements towards the recharges. Of all the other three proposals, K-means showed the best performance when locating the charging stations at the centroid of the cluster. © 2012-2018. National Institute for R and D in Informatics.https://sic.ici.ro/wp-content/uploads/2018/03/Art.-8-Issue-1-2018-SIC.pd
The Vehicle Routing Problem with Service Level Constraints
We consider a vehicle routing problem which seeks to minimize cost subject to
service level constraints on several groups of deliveries. This problem
captures some essential challenges faced by a logistics provider which operates
transportation services for a limited number of partners and should respect
contractual obligations on service levels. The problem also generalizes several
important classes of vehicle routing problems with profits. To solve it, we
propose a compact mathematical formulation, a branch-and-price algorithm, and a
hybrid genetic algorithm with population management, which relies on
problem-tailored solution representation, crossover and local search operators,
as well as an adaptive penalization mechanism establishing a good balance
between service levels and costs. Our computational experiments show that the
proposed heuristic returns very high-quality solutions for this difficult
problem, matches all optimal solutions found for small and medium-scale
benchmark instances, and improves upon existing algorithms for two important
special cases: the vehicle routing problem with private fleet and common
carrier, and the capacitated profitable tour problem. The branch-and-price
algorithm also produces new optimal solutions for all three problems
Matrix approach to consistency of the additive efficient normalization of semivalues
In fact the Shapley value is the unique efficient semivalue. This motivated Ruiz et al. to do additive efficient normalization for semivalues. In this paper, by matrix approach we derive the relationship between the additive efficient normalization of semivalues and the Shapley value. Based on the relationship, we axiomatize the additive efficient normalization of semivalues as the unique solution verifying covariance, symmetry, and reduced game property with respect to the reduced game
A Reactive Tabu Search Meta-Heuristic for the Vehicle Routing Problem with Divisible Deliveries and Pickups
Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach
In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version
A green perspective on capacitated time-dependent vehicle routing problem with time windows
This study presents a novel approach to the vehicle routing problem by
focusing on greenhouse gas emissions and fuel consumption aiming to mitigate
adverse environmental effects of transportation. A time-dependent model with
time windows is developed to incorporate speed and schedule in transportation.
The model considers speed limits for different times of the day in a realistic
delivery context. Due to the complexity of solving the model, a simulated
annealing algorithm is proposed to find solutions with high quality in a timely
manner. Our method can be used in practice to lower fuel consumption and
greenhouse gas emissions while total route cost is also controlled to some
extent. The capability of method is depicted by numerical examples productively
solved within 3.5% to the exact optimal for small and mid-sized problems.
Moreover, comparatively appropriate solutions are obtained for large problems
in averagely one tenth of the exact method restricted computation time.Comment: 17 pages, accepted pre-print (author copy
- …
