2,958 research outputs found

    Systematic review of the current status of cadaveric simulation for surgical training

    Get PDF
    Background: There is growing interest in and provision of cadaveric simulation courses for surgical trainees. This is being driven by the need to modernize and improve the efficiency of surgical training within the current challenging training climate. The objective of this systematic review is to describe and evaluate the evidence for cadaveric simulation in postgraduate surgical training. Methods: A PRISMA‐compliant systematic literature review of studies that prospectively evaluated a cadaveric simulation training intervention for surgical trainees was undertaken. All relevant databases and trial registries were searched to January 2019. Methodological rigour was assessed using the widely validated Medical Education Research Quality Index (MERSQI) tool. Results: A total of 51 studies were included, involving 2002 surgical trainees across 69 cadaveric training interventions. Of these, 22 assessed the impact of the cadaveric training intervention using only subjective measures, five measured impact by change in learner knowledge, and 23 used objective tools to assess change in learner behaviour after training. Only one study assessed patient outcome and demonstrated transfer of skill from the simulated environment to the workplace. Of the included studies, 67 per cent had weak methodology (MERSQI score less than 10·7). Conclusion: There is an abundance of relatively low‐quality evidence showing that cadaveric simulation induces short‐term skill acquisition as measured by objective means. There is currently a lack of evidence of skill retention, and of transfer of skills following training into the live operating theatre

    Virtual and Augmented Reality in Medical Education

    Get PDF
    Virtual reality (VR) and augmented reality (AR) are two contemporary simulation models that are currently upgrading medical education. VR provides a 3D and dynamic view of structures and the ability of the user to interact with them. The recent technological advances in haptics, display systems, and motion detection allow the user to have a realistic and interactive experience, enabling VR to be ideal for training in hands-on procedures. Consequently, surgical and other interventional procedures are the main fields of application of VR. AR provides the ability of projecting virtual information and structures over physical objects, thus enhancing or altering the real environment. The integration of AR applications in the understanding of anatomical structures and physiological mechanisms seems to be beneficial. Studies have tried to demonstrate the validity and educational effect of many VR and AR applications, in many different areas, employed via various hardware platforms. Some of them even propose a curriculum that integrates these methods. This chapter provides a brief history of VR and AR in medicine, as well as the principles and standards of their function. Finally, the studies that show the effect of the implementation of these methods in different fields of medical training are summarized and presented

    A Novel FEM-Based Numerical Solver for Interactive Catheter Simulation in Virtual Catheterization

    Get PDF
    Virtual reality-based simulators are very helpful for trainees to acquire the skills of manipulating catheters and guidewires during the vascular interventional surgeries. In the development of such a simulator, however, it is a great challenge to realistically model and simulate deformable catheters and guidewires in an interactive manner. We propose a novel method to simulate the motion of catheters or guidewires and their interactions with patients' vascular system. Our method is based on the principle of minimal total potential energy. We formulate the total potential energy in the vascular interventional circumstance by summing up the elastic energy deriving from the bending of the catheters or guidewires, the potential energy due to the deformation of vessel walls, and the work by the external forces. We propose a novel FEM-based approach to simulate the deformation of catheters and guidewires. The motion of catheters or the guidewires and their responses to every input from the interventionalist can be calculated globally. Experiments have been conducted to validate the feasibility of the proposed method, and the results demonstrate that our method can realistically simulate the complex behaviors of catheters and guidewires in an interactive manner

    Patient-specific virtual reality simulation : a patient-tailored approach of endovascular aneurysm repair

    Get PDF

    Body Wall Force Sensor for Simulated Minimally Invasive Surgery: Application to Fetal Surgery

    Get PDF
    Surgical interventions are increasingly executed minimal invasively. Surgeons insert instruments through tiny incisions in the body and pivot slender instruments to treat organs or tissue below the surface. While a blessing for patients, surgeons need to pay extra attention to overcome the fulcrum effect, reduced haptic feedback and deal with lost hand-eye coordination. The mental load makes it difficult to pay sufficient attention to the forces that are exerted on the body wall. In delicate procedures such as fetal surgery, this might be problematic as irreparable damage could cause premature delivery. As a first attempt to quantify the interaction forces applied on the patient's body wall, a novel 6 degrees of freedom force sensor was developed for an ex-vivo set up. The performance of the sensor was characterised. User experiments were conducted by 3 clinicians on a set up simulating a fetal surgical intervention. During these simulated interventions, the interaction forces were recorded and analysed when a normal instrument was employed. These results were compared with a session where a flexible instrument under haptic guidance was used. The conducted experiments resulted in interesting insights in the interaction forces and stresses that develop during such difficult surgical intervention. The results also implicated that haptic guidance schemes and the use of flexible instruments rather than rigid ones could have a significant impact on the stresses that occur at the body wall

    A Survey on the Current Status and Future Challenges Towards Objective Skills Assessment in Endovascular Surgery

    Get PDF
    Minimally-invasive endovascular interventions have evolved rapidly over the past decade, facilitated by breakthroughs in medical imaging and sensing, instrumentation and most recently robotics. Catheter based operations are potentially safer and applicable to a wider patient population due to the reduced comorbidity. As a result endovascular surgery has become the preferred treatment option for conditions previously treated with open surgery and as such the number of patients undergoing endovascular interventions is increasing every year. This fact coupled with a proclivity for reduced working hours, results in a requirement for efficient training and assessment of new surgeons, that deviates from the “see one, do one, teach one” model introduced by William Halsted, so that trainees obtain operational expertise in a shorter period. Developing more objective assessment tools based on quantitative metrics is now a recognised need in interventional training and this manuscript reports the current literature for endovascular skills assessment and the associated emerging technologies. A systematic search was performed on PubMed (MEDLINE), Google Scholar, IEEXplore and known journals using the keywords, “endovascular surgery”, “surgical skills”, “endovascular skills”, “surgical training endovascular” and “catheter skills”. Focusing explicitly on endovascular surgical skills, we group related works into three categories based on the metrics used; structured scales and checklists, simulation-based and motion-based metrics. This review highlights the key findings in each category and also provides suggestions for new research opportunities towards fully objective and automated surgical assessment solutions

    25th International Congress of the European Association for Endoscopic Surgery (EAES) Frankfurt, Germany, 14-17 June 2017 : Oral Presentations

    Get PDF
    Introduction: Ouyang has recently proposed hiatal surface area (HSA) calculation by multiplanar multislice computer tomography (MDCT) scan as a useful tool for planning treatment of hiatus defects with hiatal hernia (HH), with or without gastroesophageal reflux (MRGE). Preoperative upper endoscopy or barium swallow cannot predict the HSA and pillars conditions. Aim to asses the efficacy of MDCT’s calculation of HSA for planning the best approach for the hiatal defects treatment. Methods: We retrospectively analyzed 25 patients, candidates to laparoscopic antireflux surgery as primary surgery or hiatus repair concomitant with or after bariatric surgery. Patients were analyzed preoperatively and after one-year follow-up by MDCT scan measurement of esophageal hiatus surface. Five normal patients were enrolled as control group. The HSA’s intraoperative calculation was performed after complete dissection of the area considered a triangle. Postoperative CT-scan was done after 12 months or any time reflux symptoms appeared. Results: (1) Mean HSA in control patients with no HH, no MRGE was cm2 and similar in non-complicated patients with previous LSG and cruroplasty. (2) Mean HSA in patients candidates to cruroplasty was 7.40 cm2. (3) Mean HSA in patients candidates to redo cruroplasty for recurrence was 10.11 cm2. Discussion. MDCT scan offer the possibility to obtain an objective measurement of the HSA and the correlation with endoscopic findings and symptoms. The preoperative information allow to discuss with patients the proper technique when a HSA[5 cm2 is detected. During the follow-up a correlation between symptoms and failure of cruroplasty can be assessed. Conclusions: MDCT scan seems to be an effective non-invasive method to plan hiatal defect treatment and to check during the follow-up the potential recurrence. Future research should correlate in larger series imaging data with intraoperative findings

    Capturing the Essence of Developing Endovascular Expertise for the Construction of a Global Assessment Instrument

    Get PDF
    AbstractObjectivesTo explore what characterises the development of endovascular expertise and to construct a novel global assessment instrument.DesignLiterature review and an experimental study.Materials and methodsThe literature was searched for information regarding available global rating scales (GRSs); scientific societies’ official statements on endovascular competence; and task analyses of endovascular procedures. In the experimental study, clinicians performed a video-recorded simulated iliac-artery stenting procedure. Subsequently, by using the method of retrospective verbalisation, the clinicians were interviewed while watching their performance on video commenting on key issues of the construct. Data from all sources were analysed, categorised and synthesised into a novel rating scale.ResultsAvailable GRSs primarily included technical aspects of performance, whereas the competence statements, task analyses and clinicians’ perceptions added a range of non-technical aspects. The novel rating scale SAVE (Structured Assessment of endoVascular Expertise) differs from prior scales by including issues of pre-planning; prediction of challenges; preparation of tools; management of imaging presentation; distinction of technical skills into external and internal control according to operator focus of visual attention; adaptation of strategy; clinical decision making; use of assistant; complications; inter-personal skills; and post-procedural planning.ConclusionsThe essence of developing endovascular expertise goes far beyond mere technical aspects

    Exploration, design and application of simulation based technology in interventional cardiology

    Get PDF
    Medical education is undergoing a vast change from the traditional apprenticeship model to technology driven delivery of training to meet the demands of the new generation of doctors. With the reduction in the training hours of junior doctors, technology driven education can compensate for the time deficit in training. Each new technology arrives on a wave of great expectations; sometimes our expectations of true change are met and sometimes the new technology remains as a passing fashion only. The aim of the thesis is to explore, design and apply simulation based applications in interventional cardiology for educating the doctors and the public. Chapters 1and 2 present an overview of the current practice of education delivery and the evidence concerning simulation based education in interventional cardiology. Introduction of any new technology into an established system is often met with resistance. Hence Chapters 3 and 4 explore the attitudes and perceptions of consultants and trainees in cardiology towards the integration of a simulation based education into the cardiology curriculum. Chapters 5 and 6 present the “i-health project,” introduction of an electronic form for clinical information transfer from the ambulance crew to the hospital, enactment of case scenarios of myocardial infarction of varied levels of difficulty in a simulated environment and preliminary evaluation of the simulation. Chapter 7 focuses on educating the public in cardiovascular diseases and in coronary interventional procedures through simulation technology. Finally, Chapter 8 presents an overview of my findings, limitations and the future research that needs to be conducted which will enable the successful adoption of simulation based education into the cardiology curriculum.Open Acces

    Visual Perception and Cognition in Image-Guided Intervention

    Get PDF
    Surgical image visualization and interaction systems can dramatically affect the efficacy and efficiency of surgical training, planning, and interventions. This is even more profound in the case of minimally-invasive surgery where restricted access to the operative field in conjunction with limited field of view necessitate a visualization medium to provide patient-specific information at any given moment. Unfortunately, little research has been devoted to studying human factors associated with medical image displays and the need for a robust, intuitive visualization and interaction interfaces has remained largely unfulfilled to this day. Failure to engineer efficient medical solutions and design intuitive visualization interfaces is argued to be one of the major barriers to the meaningful transfer of innovative technology to the operating room. This thesis was, therefore, motivated by the need to study various cognitive and perceptual aspects of human factors in surgical image visualization systems, to increase the efficiency and effectiveness of medical interfaces, and ultimately to improve patient outcomes. To this end, we chose four different minimally-invasive interventions in the realm of surgical training, planning, training for planning, and navigation: The first chapter involves the use of stereoendoscopes to reduce morbidity in endoscopic third ventriculostomy. The results of this study suggest that, compared with conventional endoscopes, the detection of the basilar artery on the surface of the third ventricle can be facilitated with the use of stereoendoscopes, increasing the safety of targeting in third ventriculostomy procedures. In the second chapter, a contour enhancement technique is described to improve preoperative planning of arteriovenous malformation interventions. The proposed method, particularly when combined with stereopsis, is shown to increase the speed and accuracy of understanding the spatial relationship between vascular structures. In the third chapter, an augmented-reality system is proposed to facilitate the training of planning brain tumour resection. The results of our user study indicate that the proposed system improves subjects\u27 performance, particularly novices\u27, in formulating the optimal point of entry and surgical path independent of the sensorimotor tasks performed. In the last chapter, the role of fully-immersive simulation environments on the surgeons\u27 non-technical skills to perform vertebroplasty procedure is investigated. Our results suggest that while training surgeons may increase their technical skills, the introduction of crisis scenarios significantly disturbs the performance, emphasizing the need of realistic simulation environments as part of training curriculum
    • 

    corecore