2 research outputs found

    VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems on ARMv8-A

    Get PDF
    With the emergence of multicore embedded System on Chip (SoC), the integration of several applications with different levels of criticality on the same platform is becoming increasingly popular. These platforms, known as mixed-criticality systems, need to meet numerous requirements such as real-time constraints, Operating System (OS) scheduling, memory and OSes isolation. To construct mixed-criticality systems, various solutions, based on virtualization extensions, have been presented where OSes are contained in a Virtual Machine (VM) through the use of a hypervisor. However, such implementations usually lack hardware features to ensure a full isolation of other bus masters (e.g., Direct Memory Access (DMA) peripherals, Graphics Processing Unit (GPU)) between OSes. Furthermore on multicore implementation, one core is usually dedicated to one OS, causing CPU underutilization. To address these issues, this paper presents VOSYSmonitor, a multi-core software layer, which allows the co-execution of a safety-critical Real-Time Operating System (RTOS) and a non-critical General Purpose Operating System (GPOS) on the same hardware ARMv8-A platform. VOSYSmonitor main differentiation factors with the known solutions is the possibility for a processor to switch between secure and non-secure code execution at runtime. The partitioning is ensured by the ARM TrustZone technology, thus allowing to preserve the usage of virtualization features for the GPOS. VOSYSmonitor architecture will be detailed in this paper, while benchmarking its performance versus other known solutions

    VOSYSmonitor, a TrustZone-based Hypervisor for ISO 26262 Mixed-critical System

    Get PDF
    With the emergence of multicore embedded System on Chip (SoC), the integration of several applications with different levels of criticality on the same platform is becoming increasingly popular. These platforms, known as mixed-criticality systems, need to meet numerous requirements (e.g. real-time constraints, multiple Operating Systems (OS) scheduling, pro- viding temporal and spatial isolation). In this context Virtual Open Systems has developed VOSYSmonitor, a thin software layer, which allows the co-execution of a safety-critical and non- critical applications on a single ARM-based multi-core SoC. This software element has been developed according to the ISO 26262 standard. One of the key aspects of this standard is the control of random and systematic failures, including the ones induced by faulty or aging hardware. In the case of a software component, the means to detect anomalies on the hardware are limited and depend on choices of the manufacturer (i.e. implementation of Dual redundant Core Lock step (DCLS)). However, the software is able to check a part of these failures. It can be by either reading the configuration registers of a peripheral, or checking the sanity of a memory region. The purpose of this paper is to showcase how a safety-related software element (e.g. VOSYSmonitor) can detect and recover from failures, while ensuring that the safety-related goals are still reached
    corecore