59,616 research outputs found
Modeling the virtual machine allocation problem
Finding the right allocation of virtual machines (VM) in cloud data centers is one of the key optimization
problems in cloud computing. Accordingly, many algorithms have been proposed for the problem. However,
lacking a single, generally accepted formulation of the VM allocation problem, there are many subtle differences
in the problem formulations that these algorithms address; moreover, in several cases, the exact problem formu-
lation is not even defined explicitly. Hence in this paper, we present a comprehensive generic model of the VM
allocation problem. We also show how the often-investigated problem variants fit into this general model
End-to-end informed VM selection in compute clouds
The selection of resources, particularly VMs, in current public IaaS clouds is usually done in a blind fashion, as cloud users do not have much information about resource consumption by co-tenant third-party tasks. In particular, communication patterns can play a significant part in cloud application performance and responsiveness, specially in the case of novel latencysensitive applications, increasingly common in today’s clouds. Thus, herein we propose an end-to-end approach to the VM allocation problem using policies based uniquely on round-trip time measurements between VMs. Those become part of a userlevel ‘Recommender Service’ that receives VM allocation requests with certain network-related demands and matches them to a suitable subset of VMs available to the user within the cloud. We propose and implement end-to-end algorithms for VM selection that cover desirable profiles of communications between VMs in distributed applications in a cloud setting, such as profiles with prevailing pair-wise, hub-and-spokes, or clustered communication patterns between constituent VMs. We quantify the expected benefits from deploying our Recommender Service by comparing our informed VM allocation approaches to conventional, random allocation methods, based on real measurements of latencies between Amazon EC2 instances. We also show that our approach is completely independent from cloud architecture details, is adaptable to different types of applications and workloads, and is lightweight and transparent to cloud providers.This work is supported in part by the National Science
Foundation under grant CNS-0963974
Cost Minimization of Virtual Machine Allocation in Public Clouds Considering Multiple Applications
International Conference, GECON 2017 (14. 2017. Biarritz)This paper presents a virtual machine (VM) allocation strategy to optimize the cost of VM deployments in public clouds. It can simultaneously deal with multiple applications and it is formulated as an optimization problem that takes the level of performance to be reached by a set of applications as inputs. It considers real characteristics of infrastructure providers such as VM types, limits on the number VMs that can be deployed, and pricing schemes. As output, it generates a VM allocation to support the performance requirements of all the applications. The strategy combines short-term and long-term allocation phases in order to take advantage of VMs belonging to two different pricing categories: on-demand and reserved. A quantization technique is introduced to reduce the size of the allocation problem and, thus, significantly decrease the computational complexity. The experiments show that the strategy can optimize costs for problems that could not be solved with previous approache
A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning
Automatic decision-making approaches, such as reinforcement learning (RL),
have been applied to (partially) solve the resource allocation problem
adaptively in the cloud computing system. However, a complete cloud resource
allocation framework exhibits high dimensions in state and action spaces, which
prohibit the usefulness of traditional RL techniques. In addition, high power
consumption has become one of the critical concerns in design and control of
cloud computing systems, which degrades system reliability and increases
cooling cost. An effective dynamic power management (DPM) policy should
minimize power consumption while maintaining performance degradation within an
acceptable level. Thus, a joint virtual machine (VM) resource allocation and
power management framework is critical to the overall cloud computing system.
Moreover, novel solution framework is necessary to address the even higher
dimensions in state and action spaces. In this paper, we propose a novel
hierarchical framework for solving the overall resource allocation and power
management problem in cloud computing systems. The proposed hierarchical
framework comprises a global tier for VM resource allocation to the servers and
a local tier for distributed power management of local servers. The emerging
deep reinforcement learning (DRL) technique, which can deal with complicated
control problems with large state space, is adopted to solve the global tier
problem. Furthermore, an autoencoder and a novel weight sharing structure are
adopted to handle the high-dimensional state space and accelerate the
convergence speed. On the other hand, the local tier of distributed server
power managements comprises an LSTM based workload predictor and a model-free
RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed
Computing (ICDCS 2017
EPOBF: Energy Efficient Allocation of Virtual Machines in High Performance Computing Cloud
Cloud computing has become more popular in provision of computing resources
under virtual machine (VM) abstraction for high performance computing (HPC)
users to run their applications. A HPC cloud is such cloud computing
environment. One of challenges of energy efficient resource allocation for VMs
in HPC cloud is tradeoff between minimizing total energy consumption of
physical machines (PMs) and satisfying Quality of Service (e.g. performance).
On one hand, cloud providers want to maximize their profit by reducing the
power cost (e.g. using the smallest number of running PMs). On the other hand,
cloud customers (users) want highest performance for their applications. In
this paper, we focus on the scenario that scheduler does not know global
information about user jobs and user applications in the future. Users will
request shortterm resources at fixed start times and non interrupted durations.
We then propose a new allocation heuristic (named Energy-aware and Performance
per watt oriented Bestfit (EPOBF)) that uses metric of performance per watt to
choose which most energy-efficient PM for mapping each VM (e.g. maximum of MIPS
per Watt). Using information from Feitelson's Parallel Workload Archive to
model HPC jobs, we compare the proposed EPOBF to state of the art heuristics on
heterogeneous PMs (each PM has multicore CPU). Simulations show that the EPOBF
can reduce significant total energy consumption in comparison with state of the
art allocation heuristics.Comment: 10 pages, in Procedings of International Conference on Advanced
Computing and Applications, Journal of Science and Technology, Vietnamese
Academy of Science and Technology, ISSN 0866-708X, Vol. 51, No. 4B, 201
- …
