9,564 research outputs found
Cross-Calibration of AQUA-MODIS and NPP-VIIRS Reflective Solar Bands for a Seamless Record of CERES Cloud and Flux Properties
The CERES measured shortwave and longwave fluxes rely on the cloud properties derived using the coincident observations from the accompanying high-resolution MODIS and VIIRS imagers. The calibration consistency is required between MODIS and VIIRS radiances to ensure that the CERES provided cloud property retrievals are temporally consistent. This paper presents multiple approaches of cross-calibrating the spectrally comparable reflective solar bands (RSB) of Aqua-MODIS and NPP- VIIRS, and estimates the radiometric biases for individual band pair. The inter-comparison is performed between the Aqua-MODIS collection 6.1 level 1B and NPP-VIIRS Land PEATE V1 datasets. Radiometric biases up to 3% were estimated bet een the MODIS and VIIRS radiances for visible bands
A Comparison of the Pac-X Trans-Pacific Wave Glider Data and Satellite Data (MODIS, Aquarius, TRMM and VIIRS)
Tracy A. Villareal, Marine Science Institute and Department of Marine Science, The University of Texas at Austin, Port Aransas, Texas, United States of AmericaCara Wilson, Environmental Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Pacific Grove, California, United States of AmericaFour wave-propelled autonomous vehicles (Wave Gliders) instrumented with a variety of oceanographic and meteorological sensors were launched from San Francisco, CA in November 2011 for a trans-Pacific (Pac-X) voyage to test platform endurance. Two arrived in Australia, one in Dec 2012 and one in February 2013, while the two destined for Japan both ran into technical difficulties and did not arrive at their destination. The gliders were all equipped with sensors to measure temperature, salinity, turbidity, oxygen, and both chlorophyll and oil fluorescence. Here we conduct an initial assessment of the data set, noting necessary quality control steps and instrument utility. We conduct a validation of the Pac-X dataset by comparing the glider data to equivalent, or near-equivalent, satellite measurements. Sea surface temperature and salinity compared well to satellite measurements. Chl fluorescence from the gliders was more poorly correlated, with substantial between glider variability. Both turbidity and oil CDOM sensors were compromised to some degree by interfering processes. The well-known diel cycle in chlorophyll fluorescence was observed suggesting that mapping physiological data over large scales is possible. The gliders captured the Pacific Ocean’s major oceanographic features including the increased chlorophyll biomass of the California Current and equatorial upwelling. A comparison of satellite sea surface salinity (Aquarius) and glider-measured salinity revealed thin low salinity lenses in the southwestern Pacific Ocean. One glider survived a direct passage through a tropical cyclone. Two gliders traversed an open ocean phytoplankton bloom; extensive spiking in the chlorophyll fluorescence data is consistent with aggregation and highlights another potential future use for the gliders. On long missions, redundant instrumentation would aid in interpreting unusual data streams, as well as a means to periodically image the sensor heads. Instrument placement is critical to minimize bubble-related problems in the data.The authors have no support or funding to report.Marine ScienceEmail: [email protected]
What do we know about poverty in North Korea?
Reliable quantitative information on the North Korean economy is extremely scarce. In particular, reliable income per capita and poverty figures for the country are not available. In this contribution, we provide for the first time estimates of absolute poverty rates in North Korean subnational regions based on the combination of innovative remote-sensednight-time light intensity data (monthly information for built areas) with estimated income distributions. Our results, which are robust to the use of different methods to approximatethe income distribution in the country, indicate that the share of persons living in extreme poverty in North Korea may be larger than previously thought. We estimate a poverty rate for the country of around 60% in 2018 and a high volatility in the dynamics of income at the national level in North Korea for the period 2012–2018. Income per capita estimates tend to decline significantly from 2012 to 2015 and present a recovery since 2016. The subnational estimates of income and poverty reveal a change in relative dynamics since the second half of the 2012–2018 period. The first part of the period is dominated by divergent dynamics inincome across regions, while the second half reveals convergence in regional income
Generating global products of LAI and FPAR from SNPP-VIIRS data: theoretical background and implementation
Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation have been successfully generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) data since early 2000. As the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard, the Suomi National Polar-orbiting Partnership (SNPP) has inherited the scientific role of MODIS, and the development of a continuous, consistent, and well-characterized VIIRS LAI/FPAR data set is critical to continue the MODIS time series. In this paper, we build the radiative transfer-based VIIRS-specific lookup tables by achieving minimal difference with the MODIS data set and maximal spatial coverage of retrievals from the main algorithm. The theory of spectral invariants provides the configurable physical parameters, i.e., single scattering albedos (SSAs) that are optimized for VIIRS-specific characteristics. The effort finds a set of smaller red-band SSA and larger near-infraredband SSA for VIIRS compared with the MODIS heritage. The VIIRS LAI/FPAR is evaluated through comparisons with one year of MODIS product in terms of both spatial and temporal patterns. Further validation efforts are still necessary to ensure the product quality. Current results, however, imbue confidence in the VIIRS data set and suggest that the efforts described here meet the goal of achieving the operationally consistent multisensor LAI/FPAR data sets. Moreover, the strategies of parametric adjustment and LAI/FPAR evaluation applied to SNPP-VIIRS can also be employed to the subsequent Joint Polar Satellite System VIIRS or other instruments.Accepted manuscrip
The Effects of Different Footprint Sizes and Cloud Algorithms on the Top-Of-Atmosphere Radiative Flux Calculation from the Clouds and Earths Radiant Energy System (CERES) Instrument on Suomi National Polar-Orbiting Partnership (NPP)
Only one Clouds and Earths Radiant Energy System (CERES) instrument is onboard the Suomi National Polar-orbiting Partnership (NPP) and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs) specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs) into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W/sq. m for SW (shortwave) and less than 1.0 W/sq. m for both daytime and nighttime LW (longwave). The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W/sq. m when compared to simulated Aqua CERES, and the root-mean-square (RMS) error is 2.2 W/sq. m between them; the biases of daytime and night- time LW flux are close to zero with RMS errors of 0.8 and 0.2 W/sq. m. These uncertainties are within the uncertainties of CERES ADMs. When both footprint size and cloud property (cloud fraction and optical depth) differences are considered, the uncertainties of monthly gridded NPP CERES SW flux can be up to 20 W/sq. m in the Arctic regions where cloud optical depth retrievals from VIIRS differ significantly from MODIS. The global monthly mean instantaneous SW flux from simulated NPP CERES has a high bias of 1.1 W/sq. m and the RMS error increases to 5.2 W/sq. m. LW flux shows less sensitivity to cloud property differences than SW flux, with uncertainties of about 2 W/sq. m in the monthly gridded LW flux, and the RMS errors of global monthly mean daytime and nighttime fluxes increase only slightly. These results highlight the importance of consistent cloud retrieval algorithms to maintain the accuracy and stability of the CERES climate data record
Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in China Using Nighttime Light and Air Quality Data
In order to analyze the impact of COVID-19 on people's lives, activities and
the natural environment, this paper investigates the spatial and temporal
characteristics of Night Time Light (NTL) radiance and Air Quality Index (AQI)
before and during the pandemic in mainland China. Our results show that the
monthly average NTL brightness is much lower during the quarantine period than
before. This study categorizes NTL into three classes: residential area,
transportation and public facilities and commercial centers, with NTL radiance
ranges of 5-20, 20-40 and greater than 40 nW/(cm*cm*sr), respectively. We found
that the Number Of Pixels (NOP) with NTL detection increased in the residential
area and decreased in the commercial centers for most of the provinces after
the shutdown, while transportation and public facilities generally stayed the
same. More specifically, we examined these factors in Wuhan, where the first
confirmed cases were reported, and where the earliest quarantine measures were
taken. Observations and analysis of pixels associated with commercial centers
were observed to have lower NTL radiance values, indicating a dimming behavior,
while residential area pixels recorded increased levels of brightness, after
the beginning of the lockdown. The study also discovered a significant
decreasing trend in the daily average AQI for the whole country, with cleaner
air in most provinces during February and March, compared to January 2020. In
conclusion, the outbreak and spread of COVID-19 has had a crucial impact on
people's daily lives and activity ranges through the increased implementation
of lockdown and quarantine policies. On the other hand, the air quality of
China has improved with the reduction of non-essential industries and motor
vehicle usage.Comment: 12 pages, 5 figure
Assessment of the NPP VIIRS RVS for the Thermal Emissive Bands Using the First Pitch Maneuver Observations
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor carried on Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) (launched in October 2011). VIIRS sensor design draws on heritage instruments including AVHRR, OLS, SeaWiFS and MODIS. It has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to characterize the on-orbit response for all scan angles relative to the calibrator scan angle (SD for RSB and blackbody for TEB). Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed to analyze the prelaunch RVS measurement data. A spacecraft level pitch maneuver was scheduled during the first three months of intensive Cal/Val. The NPP pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire range of scan angles, which can be used to characterize the TEB RVS. This study will provide our analysis of the pitch maneuver data and assessment of the derived TEB RVS. A comparison between the RVS determined by the pitch maneuver observations and prelaunch lab tests will be conducted for each band, detector, and half angle mirror (HAM) sid
- …
