2 research outputs found

    A high-speed integrated circuit with applications to RSA Cryptography

    Get PDF
    Merged with duplicate record 10026.1/833 on 01.02.2017 by CS (TIS)The rapid growth in the use of computers and networks in government, commercial and private communications systems has led to an increasing need for these systems to be secure against unauthorised access and eavesdropping. To this end, modern computer security systems employ public-key ciphers, of which probably the most well known is the RSA ciphersystem, to provide both secrecy and authentication facilities. The basic RSA cryptographic operation is a modular exponentiation where the modulus and exponent are integers typically greater than 500 bits long. Therefore, to obtain reasonable encryption rates using the RSA cipher requires that it be implemented in hardware. This thesis presents the design of a high-performance VLSI device, called the WHiSpER chip, that can perform the modular exponentiations required by the RSA cryptosystem for moduli and exponents up to 506 bits long. The design has an expected throughput in excess of 64kbit/s making it attractive for use both as a general RSA processor within the security function provider of a security system, and for direct use on moderate-speed public communication networks such as ISDN. The thesis investigates the low-level techniques used for implementing high-speed arithmetic hardware in general, and reviews the methods used by designers of existing modular multiplication/exponentiation circuits with respect to circuit speed and efficiency. A new modular multiplication algorithm, MMDDAMMM, based on Montgomery arithmetic, together with an efficient multiplier architecture, are proposed that remove the speed bottleneck of previous designs. Finally, the implementation of the new algorithm and architecture within the WHiSpER chip is detailed, along with a discussion of the application of the chip to ciphering and key generation

    Entwicklung von neuen Algorithmen der Computerarithmetik in Hinsicht auf ihre Nutzung in der Kryptographie

    Get PDF
    In dieser Arbeit wird eine Reihe neuer Algorithmen aus dem Bereich der ganzzahligen Langzahlcomputerarithmetik für die Anwendungen vor allem aus dem Bereich der modernen Kryptographie entwickelt. Alle hier behandelten Verfahren wurden weiterhin in Bezug auf eine Realisierung in Hardware optimiert. Es werden drei thematische Schwerpunkte behandelt. Als erstes werden neue Methoden zur Berechnung der Modularmultiplikation aufgezeigt, die sich durch ein besonders günstiges Flächen-Zeit-Produkt auszeichnen. Das zweite Thema ist ein zeitoptimaler paralleler Algorithmus für die Modularmultiplikation, der eine Zeitkomplexität von O(log n) aufweist. Das dritte Thema behandelt ein Verfahren für die zeitoptimale Multiplikation, das eine bessere Flächen-Zeit-Komplexität als der in den meisten Prozessoren benutzte Wallace Tree und die Schönhage-Strassen-Multiplikation, welche in ihrer asymptotischen Flächen-Zeit-Komplexität besser ist als alle bisher bekannten Verfahren, aufweist
    corecore