4,139 research outputs found

    Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—a Review

    Get PDF
    The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments

    Application of extreme environmental conditions to resuscitation of viable but non culturable E. coli DH5α

    Get PDF
    The resuscitation of Viable But Non-Culturable (VBNC) state in Escherichia coli DH5α as one of the most usable expression host was investigated. The VBNC state in bacteria is defined as while the cells are alive but unable to grow visibly on nonselective growth medium. After collecting several samples, Non-culturable E. coli DH5α (that has undertaken on various recombinant manipulations) were divided into different groups in order to carry-out different experiments. They were treated to heat shock at 42ºC in different periods of time, different concentration of Bile-salts and NaCl and combinational of these methods. The results showed that the almost of resuscitation treatment had positive effect on reactivation of VBNC E. coli DH5α. The combination of these parameters (various NaCl and bile salts concentration and heat shock method at 42 °C in different time) in a binary manner, also inferred to suitable results. Furthermore, by applying the three stresses simultaneously we achieved optical density up to 0.58 and 9×108 CFU/ml which had presented the best results. The results show that by applying some alterations in the condition of such recombinant E. coli DH5α, the growth path of these bacteria which remain to a VBNC phase can be changed to the normal status

    Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms

    Get PDF
    Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm−2) or 5.34 ± 0.33 log (gu cm−2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to 300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation

    Confirmation of the presence of viable but non-cultureable bacteria in the stratosphere

    Get PDF
    The presence of viable, but non-cultureable, bacteria on membranes through which stratospheric air samples were passed has been confirmed using viable fluorescent staining

    Effect of long-term starvation on the survival, recovery, and carbon utilization profiles of a bovine Escherichia coli O157:H7 isolate from New Zealand

    Get PDF
    The ability to maintain a dual lifestyle of colonizing the ruminant gut and surviving in nonhost environments once shed is key to the success of Escherichia coli O157:H7 as a zoonotic pathogen. Both physical and biological conditions encountered by the bacteria are likely to change during the transition between host and nonhost environments. In this study, carbon starvation at suboptimal temperatures in nonhost environments was simulated by starving a New Zealand bovine E. coli O157:H7 isolate in phosphate-buffered saline at 4 and 15°C for 84 days. Recovery of starved cells on media with different nutrient availabilities was monitored under aerobic and anaerobic conditions. We found that the New Zealand bovine E. coli O157:H7 isolate was able to maintain membrane integrity and viability over 84 days and that the level of recovery depended on the nutrient level of the recovery medium as well as the starvation temperature. In addition, a significant difference in carbon utilization was observed between starved and nonstarved cells

    Two decades of "Horse sweat" taint and Brettanomyces yeasts in wine: where do we stand now ?

    Get PDF
    ReviewThe unwanted modification of wine sensory attributes by yeasts of the species Brettanomyces bruxellensis due to the production of volatile phenols is presently the main microbiological threat to red wine quality. The effects of ethylphenols and other metabolites on wine flavor is now recognized worldwide and the object of lively debate. The focus of this review is to provide an update of the present knowledge and practice on the prevention of this problem in the wine industry. Brettanomyces bruxellensis, or its teleomorph, Dekkera bruxellensis, are rarely found in the natural environment and, although frequently isolated from fermenting substrates, their numbers are relatively low when compared with other fermenting species. Despite this rarity, they have long been studied for their unusual metabolical features (e.g., the Custers effect). Rising interest over the last decades is mostly due to volatile phenol production affecting high quality red wines worldwide. The challenges have been dealt with together by researchers and winemakers in an effective way and this has enabled a state where, presently, knowledge and prevention of the problem at the winery level is readily accessible. Today, the main issues have shifted from technological to sensory science concerning the effects of metabolites other than ethylphenols and the over estimation of the detrimental impact by ethylphenols on flavor. Hopefully, these questions will continue to be tackled together by science and industry for the benefit of wine enjoymentinfo:eu-repo/semantics/publishedVersio

    Persistence of viable but non-culturable bacteria during the production and distribution of drinking water

    Get PDF
    The direct measurement of in situ respiring bacteria using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) shows that, especially for Gram-negative bacteria, large numbers of viable but non-culturable (VBNC) bacteria are present in finished water from a conventional water treatment plant, and the regrowth of bacteria along distribution networks can be seen rapidly by using this very sensitive technique. The level of bacterial inactivation with chlorine is much less important than has been previously supposed (based on experiments with non-injured laboratory strains of bacteria and classical culture techniques). Threshold values of VBNC bacteria leaving water treatment plants or regrowing along distribution systems have to be determined for better control of coliform regrowth and health- risks associated with the consumption of drinking water

    Absolute bacterial cell enumeration using flow cytometry

    Full text link
    Aim: To evaluate a flow cytometry protocol that uses reference beads for the enumeration of live and dead bacteria present in a mixture. Methods and Results: Mixtures of live and dead Escherichia coli with live:dead concentration ratios varying from 0 to 100% were prepared. These samples were stained using SYTO 9 and propidium iodide and 6 {\mu}m reference beads were added. Bacteria present in live samples were enumerated by agar plate counting. Bacteria present in dead samples were enumerated by agar plate counting before treatment with isopropanol. There is a linear relationship between the presented flow cytometry method and agar plate counts for live (R2 = 0.99) and dead E. coli (R2 = 0.93) concentrations of ca. 104 to 108 bacteria ml-1 within mixtures of live and dead bacteria. Conclusions: Reliable enumeration of live E. coli within a mixture of both live and dead was possible for concentration ratios of above 2.5% live and for the enumeration of dead E. coli the lower limit was ca. 20% dead. Significance and Impact of the Study: The ability to obtain absolute cell concentrations is only available for selected flow cytometers, this study describes a method for accurate enumeration that is applicable to basic flow cytometers without specialised counting features. By demonstrating the application of the method to count E. coli, we raised points of consideration for using this FCM counting method and aim to lay the foundation for future work that uses similar methods for different bacterial strains.Comment: 31 pages, 14 figure

    Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light

    Get PDF
    Although considerable research has been carried out on a range of environmental factors that impact on the survival of Campylobacter jejuni, there is limited information on the effects of violet/blue light on this pathogen. This investigation was carried out to determine the effects of high-intensity 405-nm light on C. jejuni and to compare this with the effects on two other important Gram-negative enteric pathogens, Salmonella enteritidis and Escherichia coli O157:H7. High-intensity 405-nm light generated from an array of 405-nm light-emitting diodes was used to inactivate the test bacteria. The results demonstrated that while all three tested species were susceptible to 405-nm light inactivation, C. jejuni was by far the most sensitive organism, requiring a total dose of 18J cm−2 of 405-nm light to achieve a 5-log10 reduction. This study has established that C. jejuni is particularly susceptible to violet/blue light at a wavelength of 405nm. This finding, coupled with the safety-in-use advantages of this visible (non-ultraviolet wavelength) light, suggests that high-intensity 405-nm light may have applications for control of C. jejuni contamination levels in situations where this type of illumination can be effectively applied
    corecore