10,527 research outputs found

    Utilizing sub-topical structure of documents for information retrieval.

    Get PDF
    Text segmentation in natural language processing typically refers to the process of decomposing a document into constituent subtopics. Our work centers on the application of text segmentation techniques within information retrieval (IR) tasks. For example, for scoring a document by combining the retrieval scores of its constituent segments, exploiting the proximity of query terms in documents for ad-hoc search, and for question answering (QA), where retrieved passages from multiple documents are aggregated and presented as a single document to a searcher. Feedback in ad hoc IR task is shown to benefit from the use of extracted sentences instead of terms from the pseudo relevant documents for query expansion. Retrieval effectiveness for patent prior art search task is enhanced by applying text segmentation to the patent queries. Another aspect of our work involves augmenting text segmentation techniques to produce segments which are more readable with less unresolved anaphora. This is particularly useful for QA and snippet generation tasks where the objective is to aggregate relevant and novel information from multiple documents satisfying user information need on one hand, and ensuring that the automatically generated content presented to the user is easily readable without reference to the original source document

    Understanding Differential Search Index for Text Retrieval

    Full text link
    The Differentiable Search Index (DSI) is a novel information retrieval (IR) framework that utilizes a differentiable function to generate a sorted list of document identifiers in response to a given query. However, due to the black-box nature of the end-to-end neural architecture, it remains to be understood to what extent DSI possesses the basic indexing and retrieval abilities. To mitigate this gap, in this study, we define and examine three important abilities that a functioning IR framework should possess, namely, exclusivity, completeness, and relevance ordering. Our analytical experimentation shows that while DSI demonstrates proficiency in memorizing the unidirectional mapping from pseudo queries to document identifiers, it falls short in distinguishing relevant documents from random ones, thereby negatively impacting its retrieval effectiveness. To address this issue, we propose a multi-task distillation approach to enhance the retrieval quality without altering the structure of the model and successfully endow it with improved indexing abilities. Through experiments conducted on various datasets, we demonstrate that our proposed method outperforms previous DSI baselines.Comment: Accepted to Findings of ACL 202

    Evaluating Interpolation and Extrapolation Performance of Neural Retrieval Models

    Full text link
    A retrieval model should not only interpolate the training data but also extrapolate well to the queries that are different from the training data. While neural retrieval models have demonstrated impressive performance on ad-hoc search benchmarks, we still know little about how they perform in terms of interpolation and extrapolation. In this paper, we demonstrate the importance of separately evaluating the two capabilities of neural retrieval models. Firstly, we examine existing ad-hoc search benchmarks from the two perspectives. We investigate the distribution of training and test data and find a considerable overlap in query entities, query intent, and relevance labels. This finding implies that the evaluation on these test sets is biased toward interpolation and cannot accurately reflect the extrapolation capacity. Secondly, we propose a novel evaluation protocol to separately evaluate the interpolation and extrapolation performance on existing benchmark datasets. It resamples the training and test data based on query similarity and utilizes the resampled dataset for training and evaluation. Finally, we leverage the proposed evaluation protocol to comprehensively revisit a number of widely-adopted neural retrieval models. Results show models perform differently when moving from interpolation to extrapolation. For example, representation-based retrieval models perform almost as well as interaction-based retrieval models in terms of interpolation but not extrapolation. Therefore, it is necessary to separately evaluate both interpolation and extrapolation performance and the proposed resampling method serves as a simple yet effective evaluation tool for future IR studies.Comment: CIKM 2022 Full Pape

    Order-Disorder: Imitation Adversarial Attacks for Black-box Neural Ranking Models

    Full text link
    Neural text ranking models have witnessed significant advancement and are increasingly being deployed in practice. Unfortunately, they also inherit adversarial vulnerabilities of general neural models, which have been detected but remain underexplored by prior studies. Moreover, the inherit adversarial vulnerabilities might be leveraged by blackhat SEO to defeat better-protected search engines. In this study, we propose an imitation adversarial attack on black-box neural passage ranking models. We first show that the target passage ranking model can be transparentized and imitated by enumerating critical queries/candidates and then train a ranking imitation model. Leveraging the ranking imitation model, we can elaborately manipulate the ranking results and transfer the manipulation attack to the target ranking model. For this purpose, we propose an innovative gradient-based attack method, empowered by the pairwise objective function, to generate adversarial triggers, which causes premeditated disorderliness with very few tokens. To equip the trigger camouflages, we add the next sentence prediction loss and the language model fluency constraint to the objective function. Experimental results on passage ranking demonstrate the effectiveness of the ranking imitation attack model and adversarial triggers against various SOTA neural ranking models. Furthermore, various mitigation analyses and human evaluation show the effectiveness of camouflages when facing potential mitigation approaches. To motivate other scholars to further investigate this novel and important problem, we make the experiment data and code publicly available.Comment: 15 pages, 4 figures, accepted by ACM CCS 2022, Best Paper Nominatio

    QUERY-SPECIFIC SUBTOPIC CLUSTERING IN RESPONSE TO BROAD QUERIES

    Get PDF
    Information Retrieval (IR) refers to obtaining valuable and relevant information from various sources in response to a specific information need. For the textual domain, the most common form of information sources is a collection of textual documents or text corpus. Depending on the scope of the information need, also referred to as the query, the relevant information can span a wide range of topical themes. Hence, the relevant information may often be scattered through multiple documents in the corpus, and each satisfies the information need to varying degrees. Traditional IR systems present the relevant set of documents in the form of a ranking where the rank of a particular document corresponds to its degree of relevance to the query. If the query is sufficiently specific, the set of relevant documents will be more or less about similar topics. However, they will be much more topically diverse when the query is vague or about a generalized topic, e.g., ``Computer science. In such cases, multiple documents may be of equal importance as each represents a specific facade of the broad topic of the query. Consider, for example, documents related to information retrieval and machine learning for the query ``Computer Science. In this case, the decision to rank documents from these two subtopics would be ambiguous. Instead, presenting the retrieved results as a cluster of documents where each cluster represents one subtopic would be more appropriate. Subtopic clustering of search results has been explored in the domain of Web-search, where users receive relevant clusters of search results in response to their query. This thesis explores query-specific subtopic clustering that incorporates queries into the clustering framework. We develop a query-specific similarity metric that governs a hierarchical clustering algorithm. The similarity metric is trained to predict whether a pair of relevant documents should also share the same subtopic cluster in the context of the query. Our empirical study shows that direct involvement of the query in the clustering model significantly improves the clustering performance over a state-of-the-art neural approach on two publicly available datasets. Further qualitative studies provide insights into the strengths and limitations of our proposed approach. In addition to query-specific similarity metrics, this thesis also explores a new supervised clustering paradigm that directly optimizes for a clustering metric. Being discrete functions, existing approaches for supervised clustering find it difficult to use a clustering metric for optimization. We propose a scalable training strategy for document embedding models that directly optimizes for the RAND index, a clustering quality metric. Our method outperforms a strong neural approach and other unsupervised baselines on two publicly available datasets. This suggests that optimizing directly for the clustering outcome indeed yields better document representations suitable for clustering. This thesis also studies the generalizability of our findings by incorporating the query-specific clustering approach and our clustering metric-based optimization technique into a single end-to-end supervised clustering model. Also, we extend our methods to different clustering algorithms to show that our approaches are not dependent on any specific clustering algorithm. Having such a generalized query-specific clustering model will help to revolutionize the way digital information is organized, archived, and presented to the user in a context-aware manner
    corecore