1,368 research outputs found

    IMAGE RETRIEVAL BASED ON COMPLEX DESCRIPTIVE QUERIES

    Get PDF
    The amount of visual data such as images and videos available over web has increased exponentially over the last few years. In order to efficiently organize and exploit these massive collections, a system, apart from being able to answer simple classification based questions such as whether a specific object is present (or absent) in an image, should also be capable of searching images and videos based on more complex descriptive questions. There is also a considerable amount of structure present in the visual world which, if effectively utilized, can help achieve this goal. To this end, we first present an approach for image ranking and retrieval based on queries consisting of multiple semantic attributes. We further show that there are significant correlations present between these attributes and accounting for them can lead to superior performance. Next, we extend this by proposing an image retrieval framework for descriptive queries composed of object categories, semantic attributes and spatial relationships. The proposed framework also includes a unique multi-view hashing technique, which enables query specification in three different modalities - image, sketch and text. We also demonstrate the effectiveness of leveraging contextual information to reduce the supervision requirements for learning object and scene recognition models. We present an active learning framework to simultaneously learn appearance and contextual models for scene understanding. Within this framework we introduce new kinds of labeling questions that are designed to collect appearance as well as contextual information and which mimic the way in which humans actively learn about their environment. Furthermore we explicitly model the contextual interactions between the regions within an image and select the question which leads to the maximum reduction in the combined entropy of all the regions in the image (image entropy)

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore