1,664 research outputs found

    Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey

    Full text link
    Knowledge Graphs (KGs) play a pivotal role in advancing various AI applications, with the semantic web community's exploration into multi-modal dimensions unlocking new avenues for innovation. In this survey, we carefully review over 300 articles, focusing on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm. We begin by defining KGs and MMKGs, then explore their construction progress. Our review includes two primary task categories: KG-aware multi-modal learning tasks, such as Image Classification and Visual Question Answering, and intrinsic MMKG tasks like Multi-modal Knowledge Graph Completion and Entity Alignment, highlighting specific research trajectories. For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research. Finally, we discuss current challenges and identify emerging trends, such as progress in Large Language Modeling and Multi-modal Pre-training strategies. This survey aims to serve as a comprehensive reference for researchers already involved in or considering delving into KG and multi-modal learning research, offering insights into the evolving landscape of MMKG research and supporting future work.Comment: Ongoing work; 41 pages (Main Text), 55 pages (Total), 11 Tables, 13 Figures, 619 citations; Paper list is available at https://github.com/zjukg/KG-MM-Surve

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Multilingual Knowledge Graphs and Low-Resource Languages: A Review

    Get PDF
    There is a lack of multilingual data to support applications in a large number of languages, especially for low-resource languages. Knowledge graphs (KG) could contribute to closing the gap of language support by providing easily accessible, machine-readable, multilingual linked data, which can be reused across applications. In this paper, we provide an overview of work in the domain of multilingual KGs with a focus on low-resource languages. We review the current state of multilingual KGs along with the different aspects that are crucial for creating KGs with language coverage in mind. Special consideration is given to challenges particular to low-resource languages in KGs. We further provide an overview of applications that yield multilingual KG information as well as downstream applications reusing such multilingual data. Finally, we explore open problems regarding multilingual KGs with a focus on low-resource languages

    Facilitating Information Access for Heterogeneous Data Across Many Languages

    Get PDF
    Information access, which enables people to identify, retrieve, and use information freely and effectively, has attracted interest from academia and industry. Systems for document retrieval and question answering have helped people access information in powerful and useful ways. Recently, natural language technologies based on neural network have been applied to various tasks for information access. Specifically, transformer-based pre-trained models have pushed tasks such as document and passage retrieval to new state-of-the-art effectiveness. (1) Most of the research has focused on helping people access passages and documents on the web. However, there is abundant information stored in other formats such as semi-structured tables and domain-specific relational databases in companies. Development of the models and frameworks that support access information from these data formats is also essential. (2) Moreover, most of the advances in information access research are based on English, leaving other languages less explored. It is insufficient and inequitable in our globalized and connected world to serve only speakers of English. In this thesis, we explore and develop models and frameworks that could alleviate the aforementioned challenges. This dissertation consists of three parts. We begin with a discussion on developing models designed for accessing data in formats other than passages and documents. We mainly focus on two data formats, namely semi-structured tables and relational databases. In the second part, we discuss methods that can enhance the user experience for non-English speakers when using information access systems. Specifically, we first introduce model development for multilingual knowledge graph integration, which can benefit many information access applications such as cross-lingual question answering systems and other knowledge-driven cross-lingual NLP applications. We further focus on multilingual document dense retrieval and reranking that boost the effectiveness of search engines for non-English information access. Last but not least, we take a step further based on the aforementioned two parts by investigating models and frameworks that can facilitate non-English speakers to access structured data. In detail, we present cross-lingual Text-to-SQL semantic parsing systems that enable non-English speakers to query relational databases with queries in their languages

    ProKD: An Unsupervised Prototypical Knowledge Distillation Network for Zero-Resource Cross-Lingual Named Entity Recognition

    Full text link
    For named entity recognition (NER) in zero-resource languages, utilizing knowledge distillation methods to transfer language-independent knowledge from the rich-resource source languages to zero-resource languages is an effective means. Typically, these approaches adopt a teacher-student architecture, where the teacher network is trained in the source language, and the student network seeks to learn knowledge from the teacher network and is expected to perform well in the target language. Despite the impressive performance achieved by these methods, we argue that they have two limitations. Firstly, the teacher network fails to effectively learn language-independent knowledge shared across languages due to the differences in the feature distribution between the source and target languages. Secondly, the student network acquires all of its knowledge from the teacher network and ignores the learning of target language-specific knowledge. Undesirably, these limitations would hinder the model's performance in the target language. This paper proposes an unsupervised prototype knowledge distillation network (ProKD) to address these issues. Specifically, ProKD presents a contrastive learning-based prototype alignment method to achieve class feature alignment by adjusting the distance among prototypes in the source and target languages, boosting the teacher network's capacity to acquire language-independent knowledge. In addition, ProKD introduces a prototypical self-training method to learn the intrinsic structure of the language by retraining the student network on the target data using samples' distance information from prototypes, thereby enhancing the student network's ability to acquire language-specific knowledge. Extensive experiments on three benchmark cross-lingual NER datasets demonstrate the effectiveness of our approach.Comment: AAAI 202
    • …
    corecore