35 research outputs found

    Random Access Scheduling without Message Passing: A Collision-based AIMD Approach

    Get PDF
    Department of Computer EngineeringWireless scheduling has been extensively studied in the literature. Since Maximum Weighted Scheduling has been developed and shown to achieve the optimal performance, there have been many efforts to overcome its complexity issue. Random access has attracted much attention due to its potential for low complexity and distributed control, which are desirable for scheduling in multi-hop wireless networks. Although several interesting random access scheduling schemes have been shown to be provably efficient, they suffer in practice from high packet delays or severe performance degradation due to the control overhead to exchange information between neighboring links. In this paper, we develop a novel random access scheduling scheme that does not need message passing. We pay attention to the interplay between the links and control their access probabilities targeting at a certain collision rate. We employ the Additive Increase Multiplicative Decrease (AIMD) algorithm for convergence, and show that our proposed scheme can achieve the same performance bound as the previous random access schemes with high control overhead. We verify our results through simulations and show that our proposed scheme achieves the performance close to that of the centralized greedy algorithm.ope

    Exploiting Regional Differences: A Spatially Adaptive Random Access

    Full text link
    In this paper, we discuss the potential for improvement of the simple random access scheme by utilizing local information such as the received signal-to-interference-plus-noise-ratio (SINR). We propose a spatially adaptive random access (SARA) scheme in which the transmitters in the network utilize different transmit probabilities depending on the local situation. In our proposed scheme, the transmit probability is adaptively updated by the ratio of the received SINR and the target SINR. We investigate the performance of the spatially adaptive random access scheme. For the comparison, we derive an optimal transmit probability of ALOHA random access scheme in which all transmitters use the same transmit probability. We illustrate the performance of the spatially adaptive random access scheme through simulations. We show that the performance of the proposed scheme surpasses that of the optimal ALOHA random access scheme and is comparable with the CSMA/CA scheme.Comment: 10 pages, 10 figure

    Embedding of Virtual Network Requests over Static Wireless Multihop Networks

    Full text link
    Network virtualization is a technology of running multiple heterogeneous network architecture on a shared substrate network. One of the crucial components in network virtualization is virtual network embedding, which provides a way to allocate physical network resources (CPU and link bandwidth) to virtual network requests. Despite significant research efforts on virtual network embedding in wired and cellular networks, little attention has been paid to that in wireless multi-hop networks, which is becoming more important due to its rapid growth and the need to share these networks among different business sectors and users. In this paper, we first study the root causes of new challenges of virtual network embedding in wireless multi-hop networks, and propose a new embedding algorithm that efficiently uses the resources of the physical substrate network. We examine our algorithm's performance through extensive simulations under various scenarios. Due to lack of competitive algorithms, we compare the proposed algorithm to five other algorithms, mainly borrowed from wired embedding or artificially made by us, partially with or without the key algorithmic ideas to assess their impacts.Comment: 22 page

    Cognitive MAC Protocols Using Memory for Distributed Spectrum Sharing Under Limited Spectrum Sensing

    Full text link
    The main challenges of cognitive radio include spectrum sensing at the physical (PHY) layer to detect the activity of primary users and spectrum sharing at the medium access control (MAC) layer to coordinate access among coexisting secondary users. In this paper, we consider a cognitive radio network in which a primary user shares a channel with secondary users that cannot distinguish the signals of the primary user from those of a secondary user. We propose a class of distributed cognitive MAC protocols to achieve efficient spectrum sharing among the secondary users while protecting the primary user from potential interference by the secondary users. By using a MAC protocol with one-slot memory, we can obtain high channel utilization by the secondary users while limiting interference to the primary user at a low level. The results of this paper suggest the possibility of utilizing MAC design in cognitive radio networks to overcome limitations in spectrum sensing at the PHY layer as well as to achieve spectrum sharing at the MAC layer.Comment: 24 pages, 7 figure

    Adaptive MAC Protocols Using Memory for Networks with Critical Traffic

    Full text link
    We consider wireless communication networks where network users are subject to critical events such as emergencies and crises. If a critical event occurs to a user, the user needs to send critical traffic as early as possible. However, most existing medium access control (MAC) protocols are not adequate to meet the urgent need for data transmission by users with critical traffic. In this paper, we devise a class of distributed MAC protocols that achieve coordination using the finite-length memory of users containing their own observations and traffic types. We formulate a protocol design problem and find optimal protocols that solve the problem. We show that the proposed protocols enable a user with critical traffic to transmit its critical traffic without interruption from other users after a short delay while allowing users to share the channel efficiently when there is no critical traffic. Moreover, the proposed protocols require short memory and can be implemented without explicit message passing.Comment: 24 pages, 7 figures, 1 tabl
    corecore