38,719 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Elastic Multi-resource Network Slicing: Can Protection Lead to Improved Performance?

    Full text link
    In order to meet the performance/privacy requirements of future data-intensive mobile applications, e.g., self-driving cars, mobile data analytics, and AR/VR, service providers are expected to draw on shared storage/computation/connectivity resources at the network "edge". To be cost-effective, a key functional requirement for such infrastructure is enabling the sharing of heterogeneous resources amongst tenants/service providers supporting spatially varying and dynamic user demands. This paper proposes a resource allocation criterion, namely, Share Constrained Slicing (SCS), for slices allocated predefined shares of the network's resources, which extends the traditional alpha-fairness criterion, by striking a balance among inter- and intra-slice fairness vs. overall efficiency. We show that SCS has several desirable properties including slice-level protection, envyfreeness, and load driven elasticity. In practice, mobile users' dynamics could make the cost of implementing SCS high, so we discuss the feasibility of using a simpler (dynamically) weighted max-min as a surrogate resource allocation scheme. For a setting with stochastic loads and elastic user requirements, we establish a sufficient condition for the stability of the associated coupled network system. Finally, and perhaps surprisingly, we show via extensive simulations that while SCS (and/or the surrogate weighted max-min allocation) provides inter-slice protection, they can achieve improved job delay and/or perceived throughput, as compared to other weighted max-min based allocation schemes whose intra-slice weight allocation is not share-constrained, e.g., traditional max-min or discriminatory processor sharing

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    DOES DISTANCE MAKE GOOD NEIGHBORS? THE ROLE OF SPATIAL EXTERNALITIES AND INCOME IN RESIDENTIAL DEVELOPMENT PATTERNS

    Get PDF
    Scattered residential development is explained using a theoretical model of residential location in which household interactions generate externalities that determine location choices. Results demonstrate the role of income and heterogeneous preferences in generating this form of sprawl. Among our findings is that rising income generates only temporary increases in sprawl.Research Methods/ Statistical Methods,
    • …
    corecore