8 research outputs found

    Deploying swarm intelligence in medical imaging

    Get PDF

    Deploying swarm intelligence in medical imaging

    Get PDF

    Stochastic Diffusion Search Review

    Get PDF

    Analysis of physiological signals using machine learning methods

    Get PDF
    Technological advances in data collection enable scientists to suggest novel approaches, such as Machine Learning algorithms, to process and make sense of this information. However, during this process of collection, data loss and damage can occur for reasons such as faulty device sensors or miscommunication. In the context of time-series data such as multi-channel bio-signals, there is a possibility of losing a whole channel. In such cases, existing research suggests imputing the missing parts when the majority of data is available. One way of understanding and classifying complex signals is by using deep neural networks. The hyper-parameters of such models have been optimised using the process of back propagation. Over time, improvements have been suggested to enhance this algorithm. However, an essential drawback of the back propagation can be the sensitivity to noisy data. This thesis proposes two novel approaches to address the missing data challenge and back propagation drawbacks: First, suggesting a gradient-free model in order to discover the optimal hyper-parameters of a deep neural network. The complexity of deep networks and high-dimensional optimisation parameters presents challenges to find a suitable network structure and hyper-parameter configuration. This thesis proposes the use of a minimalist swarm optimiser, Dispersive Flies Optimisation(DFO), to enable the selected model to achieve better results in comparison with the traditional back propagation algorithm in certain conditions such as limited number of training samples. The DFO algorithm offers a robust search process for finding and determining the hyper-parameter configurations. Second, imputing whole missing bio-signals within a multi-channel sample. This approach comprises two experiments, namely the two-signal and five-signal imputation models. The first experiment attempts to implement and evaluate the performance of a model mapping bio-signals from A toB and vice versa. Conceptually, this is an extension to transfer learning using CycleGenerative Adversarial Networks (CycleGANs). The second experiment attempts to suggest a mechanism imputing missing signals in instances where multiple data channels are available for each sample. The capability to map to a target signal through multiple source domains achieves a more accurate estimate for the target domain. The results of the experiments performed indicate that in certain circumstances, such as having a limited number of samples, finding the optimal hyper-parameters of a neural network using gradient-free algorithms outperforms traditional gradient-based algorithms, leading to more accurate classification results. In addition, Generative Adversarial Networks could be used to impute the missing data channels in multi-channel bio-signals, and the generated data used for further analysis and classification tasks

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Handling Class Imbalance Using Swarm Intelligence Techniques, Hybrid Data and Algorithmic Level Solutions

    Get PDF
    This research focuses mainly on the binary class imbalance problem in data mining. It investigates the use of combined approaches of data and algorithmic level solutions. Moreover, it examines the use of swarm intelligence and population-based techniques to combat the class imbalance problem at all levels, including at the data, algorithmic, and feature level. It also introduces various solutions to the class imbalance problem, in which swarm intelligence techniques like Stochastic Diffusion Search (SDS) and Dispersive Flies Optimisation (DFO) are used. The algorithms were evaluated using experiments on imbalanced datasets, in which the Support Vector Machine (SVM) was used as a classifier. SDS was used to perform informed undersampling of the majority class to balance the dataset. The results indicate that this algorithm improves the classifier performance and can be used on imbalanced datasets. Moreover, SDS was extended further to perform feature selection on high dimensional datasets. Experimental results show that SDS can be used to perform feature selection and improve the classifier performance on imbalanced datasets. Further experiments evaluated DFO as an algorithmic level solution to optimise the SVM kernel parameters when learning from imbalanced datasets. Based on the promising results of DFO in these experiments, the novel approach was extended further to provide a hybrid algorithm that simultaneously optimises the kernel parameters and performs feature selection
    corecore