4 research outputs found

    Detection of Wideband Signal Number Based on Bootstrap Resampling

    Get PDF
    Knowing source number correctly is the precondition for most spatial spectrum estimation methods; however, many snapshots are needed when we determine number of wideband signals. Therefore, a new method based on Bootstrap resampling is proposed in this paper. First, signals are divided into some nonoverlapping subbands; apply coherent signal methods (CSM) to focus them on the single frequency. Then, fuse the eigenvalues with the corresponding eigenvectors of the focused covariance matrix. Subsequently, use Bootstrap to construct the new resampling matrix. Finally, the number of wideband signals can be calculated with obtained vector sequences according to clustering technique. The method has a high probability of success under low signal to noise ratio (SNR) and small number of snapshots

    Performance Analysis of the Decentralized Eigendecomposition and ESPRIT Algorithm

    Full text link
    In this paper, we consider performance analysis of the decentralized power method for the eigendecomposition of the sample covariance matrix based on the averaging consensus protocol. An analytical expression of the second order statistics of the eigenvectors obtained from the decentralized power method which is required for computing the mean square error (MSE) of subspace-based estimators is presented. We show that the decentralized power method is not an asymptotically consistent estimator of the eigenvectors of the true measurement covariance matrix unless the averaging consensus protocol is carried out over an infinitely large number of iterations. Moreover, we introduce the decentralized ESPRIT algorithm which yields fully decentralized direction-of-arrival (DOA) estimates. Based on the performance analysis of the decentralized power method, we derive an analytical expression of the MSE of DOA estimators using the decentralized ESPRIT algorithm. The validity of our asymptotic results is demonstrated by simulations.Comment: 18 pages, 5 figures, submitted for publication in IEEE Transactions on Signal Processin

    Spectrum Sensing in the Presence of Multiple Primary Users

    Full text link
    We consider multi-antenna cooperative spectrum sensing in cognitive radio networks, when there may be multiple primary users. A detector based on the spherical test is analyzed in such a scenario. Based on the moments of the distributions involved, simple and accurate analytical formulae for the key performance metrics of the detector are derived. The false alarm and the detection probabilities, as well as the detection threshold and Receiver Operation Characteristics are available in closed form. Simulations are provided to verify the accuracy of the derived results, and to compare with other detectors in realistic sensing scenarios.Comment: Accepted in IEEE Transactions on Communication
    corecore