66,959 research outputs found

    A toolkit of mechanism and context independent widgets

    Get PDF
    Most human-computer interfaces are designed to run on a static platform (e.g. a workstation with a monitor) in a static environment (e.g. an office). However, with mobile devices becoming ubiquitous and capable of running applications similar to those found on static devices, it is no longer valid to design static interfaces. This paper describes a user-interface architecture which allows interactors to be flexible about the way they are presented. This flexibility is defined by the different input and output mechanisms used. An interactor may use different mechanisms depending upon their suitability in the current context, user preference and the resources available for presentation using that mechanism

    Unsupervised decoding of long-term, naturalistic human neural recordings with automated video and audio annotations

    Get PDF
    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Most ongoing efforts have focused on training decoders on specific, stereotyped tasks in laboratory settings. Implementing brain-computer interfaces (BCIs) in natural settings requires adaptive strategies and scalable algorithms that require minimal supervision. Here we propose an unsupervised approach to decoding neural states from human brain recordings acquired in a naturalistic context. We demonstrate our approach on continuous long-term electrocorticographic (ECoG) data recorded over many days from the brain surface of subjects in a hospital room, with simultaneous audio and video recordings. We first discovered clusters in high-dimensional ECoG recordings and then annotated coherent clusters using speech and movement labels extracted automatically from audio and video recordings. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Our results show that our unsupervised approach can discover distinct behaviors from ECoG data, including moving, speaking and resting. We verify the accuracy of our approach by comparing to manual annotations. Projecting the discovered cluster centers back onto the brain, this technique opens the door to automated functional brain mapping in natural settings

    The Ambient Horn: Designing a novel audio-based learning experience

    Get PDF
    The Ambient Horn is a novel handheld device designed to support children learning about habitat distributions and interdependencies in an outdoor woodland environment. The horn was designed to emit non-speech audio sounds representing ecological processes. Both symbolic and arbitrary mappings were used to represent the processes. The sounds are triggered in response to the childrenā€™s location in certain parts of the woodland. A main objective was to provoke children into interpreting and reflecting upon the significance of the sounds in the context in which they occur. Our study of the horn being used showed the sounds to be provocative, generating much discussion about what they signified in relation to what the children saw in the woodland. In addition, the children appropriated the horn in creative ways, trying to ā€˜scoopā€™ up new sounds as they walked in different parts of the woodland

    Multimodal virtual reality versus printed medium in visualization for blind people

    Get PDF
    In this paper, we describe a study comparing the strengths of a multimodal Virtual Reality (VR) interface against traditional tactile diagrams in conveying information to visually impaired and blind people. The multimodal VR interface consists of a force feedback device (SensAble PHANTOM), synthesized speech and non-speech audio. Potential advantages of the VR technology are well known however its real usability in comparison with the conventional paper-based medium is seldom investigated. We have addressed this issue in our evaluation. The experimental results show benefits from using the multimodal approach in terms of more accurate information about the graphs obtained by users

    Ecological IVIS design : using EID to develop a novel in-vehicle information system

    Get PDF
    New in-vehicle information systems (IVIS) are emerging which purport to encourage more environment friendly or ā€˜greenā€™ driving. Meanwhile, wider concerns about road safety and in-car distractions remain. The ā€˜Foot-LITEā€™ project is an effort to balance these issues, aimed at achieving safer and greener driving through real-time driving information, presented via an in-vehicle interface which facilitates the desired behaviours while avoiding negative consequences. One way of achieving this is to use ecological interface design (EID) techniques. This article presents part of the formative human-centred design process for developing the in-car display through a series of rapid prototyping studies comparing EID against conventional interface design principles. We focus primarily on the visual display, although some development of an ecological auditory display is also presented. The results of feedback from potential users as well as subject matter experts are discussed with respect to implications for future interface design in this field

    Feeling what you hear: tactile feedback for navigation of audio graphs

    Get PDF
    Access to digitally stored numerical data is currently very limited for sight impaired people. Graphs and visualizations are often used to analyze relationships between numerical data, but the current methods of accessing them are highly visually mediated. Representing data using audio feedback is a common method of making data more accessible, but methods of navigating and accessing the data are often serial in nature and laborious. Tactile or haptic displays could be used to provide additional feedback to support a point-and-click type interaction for the visually impaired. A requirements capture conducted with sight impaired computer users produced a review of current accessibility technologies, and guidelines were extracted for using tactile feedback to aid navigation. The results of a qualitative evaluation with a prototype interface are also presented. Providing an absolute position input device and tactile feedback allowed the users to explore the graph using tactile and proprioceptive cues in a manner analogous to point-and-click techniques
    • ā€¦
    corecore