18 research outputs found

    Using sensor pattern noise for camera model identification

    Full text link

    User profiles’ image clustering for digital investigations

    Get PDF
    Sharing images on Social Network (SN) platforms is one of the most widespread behaviors which may cause privacy-intrusive and illegal content to be widely distributed. Clustering the images shared through SN platforms according to the acquisition cameras embedded in smartphones is regarded as a significant task in forensic investigations of cybercrimes. The Sensor Pattern Noise (SPN) caused by camera sensor imperfections due to the manufacturing process has been proved to be an effective and robust camera fingerprint that can be used for several tasks, such as digital evidence analysis, smartphone fingerprinting and user profile linking as well. Clustering the images uploaded by users on their profiles is a way of fingerprinting the camera sources and it is considered a challenging task since users may upload different types of images, i.e., the images taken by users’ smartphones (taken images) and single images from different sources, cropped images, or generic images from the Web (shared images). The shared images make a perturbation in the clustering task, as they do not usually present sufficient characteristics of SPN of their related sources. Moreover, they are not directly referable to the user’s device so they have to be detected and removed from the clustering process. In this paper, we propose a user profiles’ image clustering method without prior knowledge about the type and number of the camera sources. The hierarchical graph-based method clusters both types of images, taken images and shared images. The strengths of our method include overcoming large-scale image datasets, the presence of shared images that perturb the clustering process and the loss of image details caused by the process of content compression on SN platforms. The method is evaluated on the VISION dataset, which is a public benchmark including images from 35 smartphones. The dataset is perturbed by 3000 images, simulating the shared images from different sources except for users’ smartphones. Experimental results confirm the robustness of the proposed method against perturbed datasets and its effectiveness in the image clustering

    Camera model identification based on the generalized noise model in natural images

    Get PDF
    International audienceThe goal of this paper is to design a statistical test for the camera model identification problem. The approach is based on the generalized noise model that is developed by following the image processing pipeline of the digital camera. More specifically, this model is given by starting from the heteroscedastic noise model that describes the linear relation between the expectation and variance of a RAW pixel and taking into account the non-linear effect of gamma correction.The generalized noise model characterizes more accurately a natural image in TIFF or JPEG format. The present paper is similar to our previous work that was proposed for camera model identification from RAW images based on the heteroscedastic noise model. The parameters that are specified in the generalized noise model are used as camera fingerprint to identify camera models. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test is presented and its statistical performances are theoretically established. In practice when the model parameters are unknown, two Generalized Likelihood Ratio Tests are designed to deal with this difficulty such that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated images and real natural JPEG images highlight the relevance of the proposed approac

    Camera model identification based on DCT coefficient statistics

    Get PDF
    International audienceThe goal of this paper is to design a statistical test for the camera model identification problem from JPEG images. The approach relies on the camera fingerprint extracted in the Discrete Cosine Transform (DCT) domain based on the state-of-the-art model of DCT coefficients. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test is presented and its performances are theoretically established. For a practical use, two Generalized Likelihood Ratio Tests are designed to deal with unknown model parameters such that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated and real JPEG images highlight the relevance of the proposed approach

    Conditional Adversarial Camera Model Anonymization

    Get PDF
    The model of camera that was used to capture a particular photographic image (model attribution) is typically inferred from high-frequency model-specific artifacts present within the image. Model anonymization is the process of transforming these artifacts such that the apparent capture model is changed. We propose a conditional adversarial approach for learning such transformations. In contrast to previous works, we cast model anonymization as the process of transforming both high and low spatial frequency information. We augment the objective with the loss from a pre-trained dual-stream model attribution classifier, which constrains the generative network to transform the full range of artifacts. Quantitative comparisons demonstrate the efficacy of our framework in a restrictive non-interactive black-box setting.Comment: ECCV 2020 - Advances in Image Manipulation workshop (AIM 2020
    corecore