1,937 research outputs found

    Quantum Mechanics with Trajectories: Quantum Trajectories and Adaptive Grids

    Get PDF
    Although the foundations of the hydrodynamical formulation of quantum mechanics were laid over 50 years ago, it has only been within the past few years that viable computational implementations have been developed. One approach to solving the hydrodynamic equations uses quantum trajectories as the computational tool. The trajectory equations of motion are described and methods for implementation are discussed, including fitting of the fields to gaussian clusters.Comment: Prepared for CiSE, Computing in Science and Engineering IEEE/AIP special issue on computational chemistr

    WavePacket: A Matlab package for numerical quantum dynamics. III: Quantum-classical simulations and surface hopping trajectories

    Full text link
    WavePacket is an open-source program package for numerical simulations in quantum dynamics. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] and Part II [Comp. Phys. Comm. 228, 229-244 (2018)] which dealt with quantum dynamics of closed and open systems, respectively, the present Part III adds fully classical and mixed quantum-classical propagations to WavePacket. In those simulations classical phase-space densities are sampled by trajectories which follow (diabatic or adiabatic) potential energy surfaces. In the vicinity of (genuine or avoided) intersections of those surfaces trajectories may switch between surfaces. To model these transitions, two classes of stochastic algorithms have been implemented: (1) J. C. Tully's fewest switches surface hopping and (2) Landau-Zener based single switch surface hopping. The latter one offers the advantage of being based on adiabatic energy gaps only, thus not requiring non-adiabatic coupling information any more. The present work describes the MATLAB version of WavePacket 6.0.2 which is essentially an object-oriented rewrite of previous versions, allowing to perform fully classical, quantum-classical and quantum-mechanical simulations on an equal footing, i.e., for the same physical system described by the same WavePacket input. The software package is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics are available

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids

    Get PDF
    International audienceAn approach to solve finite time horizon suboptimal feedback control problems for partial differential equations is proposed by solving dynamic programming equations on adaptive sparse grids. The approach is illustrated for the wave equation and an extension to equations of Schrödinger type is indicated. A semi-discrete optimal control problem is introduced and the feedback control is derived from the corresponding value function.The value function can be characterized as the solution of an evolutionary Hamilton-Jacobi Bellman (HJB) equation which is defined over a state space whose dimension is equal to the dimension of the underlying semi-discrete system. Besides a low dimensional semi-discretization it is important to solve the HJB equation efficiently to address the curse of dimensionality.We propose to apply a semi-Lagrangian scheme using spatially adaptive sparse grids. Sparse grids allow the discretization of the value functions in (higher) space dimensions since the curse of dimensionality of full grid methods arises to a much smaller extent. For additional efficiency an adaptive grid refinement procedure is explored.We present several numerical examples studying the effect the parameters characterizing the sparse grid have on the accuracy of the value function and the optimal trajectory

    Fully Adaptive Propagation of the Quantum-Classical Liouville Equation

    Get PDF
    In mixed quantum-classical molecular dynamics few but important degrees of freedom of a dynamical system are modeled quantum-mechanically while the remaining ones are treated within the classical approximation. Rothe methods established in the theory of partial differential equations are used to control both temporal and spatial discretization errors on grounds of a global tolerance criterion. The trapezoidal rule for adaptive integration of Liouville dynamics (TRAIL) [I. Horenko and M. Weiser, J. Comput. Chem. 24, 1921 (2003)] has been extended to account for non-adiabatic effects in molecular dynamics described by the quantum-classical Liouville equation. In the context of particle methods, the quality of the spatial approximation of the phase-space distributions is maximized while the numerical condition of the least-squares problem for the parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous propagation of moving particles (Gaussian and Dirac delta-like trajectories) in phase space employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa, downgrading Gaussians to Dirac-like trajectories. This allows for the combination of Monte-Carlo-based strategies for the sampling of densities and coherences in multi-dimensional problems with deterministic treatment of non-adiabatic effects. Numerical examples demonstrate the application of the method to spin-boson systems in different dimensionality. Non-adiabatic effects occuring at conical intersections are treated in the diabatic representation. By decreasing the global tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards exact results

    Reconciling Semiclassical and Bohmian Mechanics: IV. Multisurface Dynamics

    Full text link
    In previous articles [J. Chem. Phys. 121 4501 (2004), J. Chem. Phys. 124 034115 (2006), J. Chem. Phys. 124 034116 (2006)] a bipolar counter-propagating wave decomposition, Psi = Psi+ + Psi-, was presented for stationary states Psi of the one-dimensional Schrodinger equation, such that the components Psi+- approach their semiclassical WKB analogs in the large action limit. The corresponding bipolar quantum trajectories are classical-like and well-behaved, even when Psi has many nodes, or is wildly oscillatory. In this paper, the method is generalized for multisurface scattering applications, and applied to several benchmark problems. A natural connection is established between intersurface transitions and (+/-) transitions.Comment: 11 pages, 6 figure
    • …
    corecore