23,819 research outputs found

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamic artificial neural network-based reliability considering operational context of assets

    Get PDF
    Postprint. 24 meses de embargo (Elsevier)Assets reliability is a key issue to consider in the maintenance management policy and given its importance several estimation methods and models have been proposed within the reliability engineering discipline. However, these models involve certain assumptions which are the source of different uncertainties inherent to the estimations. An important source of uncertainty is the operational context in which the assets operate and how it affects the different failures. Therefore, this paper contributes to the reduction of the uncertainty coming from the operational context with the proposal of a novel method and its validation through a case study. The proposed model specifically addresses changes in the operational context by implementing dynamic capabilities in a new conception of the Proportional Hazards Model. It also allows to model interactions among working environment variables as well as hidden phenomena thanks to the integration within the model of artificial neural network method

    Condition-based maintenance—an extensive literature review

    Get PDF
    This paper presents an extensive literature review on the field of condition-based maintenance (CBM). The paper encompasses over 4000 contributions, analysed through bibliometric indicators and meta-analysis techniques. The review adopts Factor Analysis as a dimensionality reduction, concerning the metric of the co-citations of the papers. Four main research areas have been identified, able to delineate the research field synthetically, from theoretical foundations of CBM; (i) towards more specific implementation strategies (ii) and then specifically focusing on operational aspects related to (iii) inspection and replacement and (iv) prognosis. The data-driven bibliometric results have been combined with an interpretative research to extract both core and detailed concepts related to CBM. This combined analysis allows a critical reflection on the field and the extraction of potential future research directions

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted

    Development of a Method for Incorporating Fault Codes in Prognostic Analysis

    Get PDF
    Information from fault codes associated with a component may be used as an indicator of its health. A fault code is defined as a timestamp at which a component is not operating according to recommended guidelines. The type of fault codes which are relevant for this analysis represent mild or moderate deviations from normal behavior, rather than those requiring immediate repair. Potentially, fault codes may be used to determine the Remaining Useful Life (RUL) of a component by predicting its failure time, which will improve safety and reduce maintenance costs associated with the component. In this dissertation, methods have been developed to integrate the degradation information from fault codes into an existing prognostic parameter to improve the estimation of RUL. Optimization methods such as gradient descent were used to weight each fault code based on their relevance to degradation. Furthermore, topic models, a document analysis and clustering technique, were used as both a dimension-reduction method and fault mode isolation. Methods developed for this dissertation were applied to two real-world data sets, an actuator system and monitored signals from a motor accelerated degradation experiment. The best estimation of RUL for the actuator system was a topic model with a mean absolute error of 6.41% of the data received, and the best estimation of RUL for the motor accelerated degradation experiment was 5.7% of the average lifetime of the motors. The primary contributions of this research includes a method to construct a prognostic parameter from fault codes alone, the integration of degradation information from fault codes into an existing prognostic parameter, the use of topic models in reliability analysis of fault codes, and a software suite that performs these functions on generic data sets

    Merging Data Sources to Predict Remaining Useful Life – An Automated Method to Identify Prognostic Parameters

    Get PDF
    The ultimate goal of most prognostic systems is accurate prediction of the remaining useful life (RUL) of individual systems or components based on their use and performance. This class of prognostic algorithms is termed Degradation-Based, or Type III Prognostics. As equipment degrades, measured parameters of the system tend to change; these sensed measurements, or appropriate transformations thereof, may be used to characterize degradation. Traditionally, individual-based prognostic methods use a measure of degradation to make RUL estimates. Degradation measures may include sensed measurements, such as temperature or vibration level, or inferred measurements, such as model residuals or physics-based model predictions. Often, it is beneficial to combine several measures of degradation into a single parameter. Selection of an appropriate parameter is key for making useful individual-based RUL estimates, but methods to aid in this selection are absent in the literature. This dissertation introduces a set of metrics which characterize the suitability of a prognostic parameter. Parameter features such as trendability, monotonicity, and prognosability can be used to compare candidate prognostic parameters to determine which is most useful for individual-based prognosis. Trendability indicates the degree to which the parameters of a population of systems have the same underlying shape. Monotonicity characterizes the underlying positive or negative trend of the parameter. Finally, prognosability gives a measure of the variance in the critical failure value of a population of systems. By quantifying these features for a given parameter, the metrics can be used with any traditional optimization technique, such as Genetic Algorithms, to identify the optimal parameter for a given system. An appropriate parameter may be used with a General Path Model (GPM) approach to make RUL estimates for specific systems or components. A dynamic Bayesian updating methodology is introduced to incorporate prior information in the GPM methodology. The proposed methods are illustrated with two applications: first, to the simulated turbofan engine data provided in the 2008 Prognostics and Health Management Conference Prognostics Challenge and, second, to data collected in a laboratory milling equipment wear experiment. The automated system was shown to identify appropriate parameters in both situations and facilitate Type III prognostic model development
    • …
    corecore