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Abstract

The ultimate goal of most prognostic systems is accurate prediction of the remaining useful life
(RUL) of individual systems or components based on their use and performance. This class of prognostic
algorithms is termed Degradation-Based, or Type Ill Prognostics. As equipment degrades, measured
parameters of the system tend to change; these sensed measurements, or appropriate transformations
thereof, may be used to characterize degradation. Traditionally, individual-based prognostic methods
use a measure of degradation to make RUL estimates. Degradation measures may include sensed
measurements, such as temperature or vibration level, or inferred measurements, such as model
residuals or physics-based model predictions. Often, it is beneficial to combine several measures of
degradation into a single parameter. Selection of an appropriate parameter is key for making useful
individual-based RUL estimates, but methods to aid in this selection are absent in the literature. This
dissertation introduces a set of metrics which characterize the suitability of a prognostic parameter.
Parameter features such as trendability, monotonicity, and prognosability can be used to compare
candidate prognostic parameters to determine which is most useful for individual-based prognosis.
Trendability indicates the degree to which the parameters of a population of systems have the same
underlying shape. Monotonicity characterizes the underlying positive or negative trend of the
parameter. Finally, prognosability gives a measure of the variance in the critical failure value of a
population of systems. By quantifying these features for a given parameter, the metrics can be used
with any traditional optimization technique, such as Genetic Algorithms, to identify the optimal
parameter for a given system. An appropriate parameter may be used with a General Path Model
(GPM) approach to make RUL estimates for specific systems or components. A dynamic Bayesian
updating methodology is introduced to incorporate prior information in the GPM methodology. The
proposed methods are illustrated with two applications: first, to the simulated turbofan engine data
provided in the 2008 Prognostics and Health Management Conference Prognostics Challenge and,
second, to data collected in a laboratory milling equipment wear experiment. The automated system
was shown to identify appropriate parameters in both situations and facilitate Type Ill prognostic model

development.



Executive Summary

Unforeseen equipment failure is costly, both in terms of equipment repair costs and lost
revenue. Discovery of unanticipated pressure vessel head degradation at the Davis-Besse nuclear plant
led to a 25-month outage and estimated repair costs exceeding $600 million. In September, 2008, a
turbine generator malfunction at the D.C. Cook nuclear plant resulted in a fire which led to eventual
manual plant shutdown. Turbine repairs totaled $332 million in addition to lost revenue during the one-
year outage. Enterprise server downtime can be even more costly, resulting in a possible loss of $6.4
million per hour for brokerage operations or $2.6 million per hour for credit card authorization services.
Traditional maintenance strategies fall into one of two categories: preventive and corrective.
Preventive, or periodic, maintenance occurs on a time-based schedule, such as replacing car tires after
30,000 miles of use. It is completed every cycle, regardless of need, and is intended to occur frequently
enough to preclude any failures from occurring. Clearly, this maintenance strategy results in a
significant amount of unnecessary maintenance but reduces the occurrence of failure. Corrective
maintenance, on the other hand, occurs only when equipment fails or malfunctions, such as replacing
car tires only when they are flat. While this maintenance strategy avoids any unnecessary maintenance
by only repairing components or systems which have already failed, it also reduces equipment uptime,
resulting in lost revenue. A third maintenance strategy, proactive maintenance, attempts to avoid
failure modes by performing preventive maintenance to reduce the probability of the fault or
redesigning the system to remove the fault. Maintaining proper alignment in a car to reduce the
probability of uneven tire wear is a form of proactive maintenance intended to increase the lifetime of

the tires.

Condition-based maintenance provides a more elegant and cost-effective maintenance strategy.
Falling somewhere between the two extremes of preventive and corrective maintenance, condition-
based maintenance involves monitoring equipment health and performing maintenance actions on an
as needed basis. Condition-based maintenance is facilitated by a health monitoring system. Health
monitoring systems commonly employ several modules, including but not limited to: system monitoring,
fault detection, fault diagnostics, prognostics, and operations and maintenance planning. System
monitoring and fault detection modules are used to determine if a component or system is operating in

a nominal and expected way. If a fault or anomaly is detected by the monitoring system, the diagnostic
vi



system determines the type, and in some cases, the severity of the fault. The prognostics module uses
all the available information—including sensed system measurements, monitoring system residuals,
fault detection and diagnostic results—to estimate the Remaining Useful Life (RUL) of the system or
component along with associated confidence bounds. With this information in hand, system operation
may be adjusted to mitigate the effects of failure or to slow the progression of failure, thereby

extending the RUL to a point when a scheduled maintenance activity can occur.

Two MATLAB toolboxes have been developed to aid in health monitoring system development.
The Process and Equipment Monitoring (PEM) toolbox uses empirical modeling methods to monitor the
performance of complex engineering systems and detect deviations from normal operation, or faults.
The Process and Equipment Prognostics (PEP) toolbox uses the results of the PEM toolbox to make RUL
estimates after a fault has been detected. Prognostic algorithms can be categorized into three classes
by the type of information used in making RUL estimates. Type |, or Reliability-based, models use
traditional time-to-failure analysis to estimate the RUL of a system or component. These models
characterize the lifetime of an average system operating in historically average conditions; they do not
consider any specific information from the current system. Type Il, or stressor-based, models
incorporate operating condition information in RUL estimation. These models estimate the lifetime of
an average component or system operating in a specific environment, under specific load and usage
conditions. The final type of prognostics, Type Ill, or degradation-based, models, uses some measure of
system degradation to estimate the RUL of that specific system operating in its specific environment.
The PEP toolbox supports algorithms in each of the three model types. Type | models include reliability
analysis with Weibull, exponential, and Gaussian distributions. Type Il models include Markov Chain
models, Shock models, and Proportional Hazards models. Type lll models include General Path models
with Bayesian updating techniques. The PEP toolbox enables the rapid development and comparison of
competing prognostic models, as well as full life cycle prognostics. As a system moves through life,
different prognostic algorithms may be appropriate for estimating RUL. When the system is newly
acquired, Type | models may be the only applicable method. As operations are planned and the system
begins to operate, Type Il models can be applied to obtain a more accurate estimate. Finally, if it is
possible to measure or infer degradation based on sensed measurements of the system, Type Il models
may be used to give a truly individual-based prognosis.

vii



The ultimate goal of most prognostic systems is accurate prediction of the RUL of individual
systems or components based on their specific use and performance. As equipment degrades,
measured parameters of the system tend to change; these sensed measurements, or appropriate
transformations thereof, may be used to characterize the system degradation. Traditionally, Type Il
prognostic methods use some measure of degradation to make RUL estimates. Degradation measures
may include sensed measurements, such as temperature or vibration level, or inferred measurements,
such as model residuals or physics-based model predictions. Often, it is beneficial to combine several
measures of degradation into a single parameter to provide a more robust prognostic model. Selection
of an appropriate parameter is key for making useful individual-based RUL estimates, but methods and
guidelines to aid in this selection have not been developed. Typically, identification of a prognostic
parameter is left to expert analysis, visual inspection of available data, and knowledge of the
degradation mechanisms. This approach is tedious and costly, and scales with the number of available

data sources and possible fault modes.

This dissertation introduces a set of metrics which characterize the suitability of a prognostic
parameter. Parameter features such as trendability, monotonicity, and prognosability can be used to
compare candidate prognostic parameters to determine which is most useful for individual-based
prognosis. Trendability indicates the degree to which the parameters of a population of systems have
the same underlying shape. Monotonicity characterizes the underlying positive or negative trend of the
parameter. Finally, prognosability gives a measure of the variance in the critical failure value of a
population of systems. By quantifying these features for a given parameter, the metrics can be used
with any traditional optimization technique, such as Genetic Algorithms, to identify the optimal
parameter for a given system. An appropriate parameter may be used with a General Path Model
(GPM) to make RUL estimates for specific systems or components. A dynamic Bayesian updating
methodology is introduced to incorporate prior information in the GPM regression parameters, thereby
capitalizing on all available information. Incorporating prior knowledge into the regression is particularly
useful when only a few observations of the degradation parameter are available or the available
observations are contaminated with high noise levels. The proposed methods are illustrated with two
applications: first, to the simulated turbofan engine data proved in the 2008 Prognostics and Health
Management Conference Prognostics Challenge and, second, to data collected in a laboratory milling
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equipment wear experiment. The automated system was shown to identify appropriate parameters in

both situations and facilitate Type Ill prognostic model development.
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1 Introduction

Unexpected equipment failure can lead to large costs, both for maintenance activities and loss
of revenue. Discovery of unanticipated pressure vessel head degradation at the Davis-Besse nuclear
plant led to a 25-month outage and estimated repair costs exceeding $600 million [1]. In September,
2008, a turbine generator malfunction at the D.C. Cook nuclear plant resulted in a fire which led to
eventual manual plant shutdown. Turbine repairs totaled $332 million in addition to lost revenue during
the one-year outage. Enterprise server downtime can be even more costly, resulting in a possible loss of
$6.4 million per hour for brokerage operations or $2.6 million per hour for credit card authorization
services [2]. Obviously, it is of paramount importance to be aware of impending equipment failures so
that operations can be adjusted or auxiliary equipment can be employed to avoid these costs when

possible.

Traditionally, maintenance activities have taken one of two approaches: preventive and
corrective. Preventive maintenance includes routine maintenance activities scheduled on a time basis
designed to prevent failure from occurring. While these activities may minimize operating cost, they
typically involve the highest maintenance costs. Conversely, corrective maintenance involves
performing maintenance only when a failure occurs. While this eliminates unnecessary maintenance, it
ensures that every piece of equipment in the system will fail. Between these two extremes lies
condition-based maintenance, wherein maintenance actions are performed as needed based on the
condition of the equipment. Ideally in this strategy, maintenance is performed after a fault occurs but
before failure to reduce any unnecessary maintenance or unplanned downtime. The chart in Figure 1,
adapted from [3], shows the relative costs associated with each maintenance strategy. The lowest total
costs tend to occur with a condition-based maintenance strategy. However, in order to fully realize the
benefit of such a strategy, it is important to accurately trend the effect of a fault on system performance

through prognostics.

Prognostics is a term given to equipment life prediction techniques and may be thought of as
the "holy grail" of condition based maintenance. Prognostics can play an important role in increasing
safety, reducing downtime, and improving the corporate bottom line by facilitating operations planning
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Figure 1: Operating and Maintenance Cost Chart [3]

and timely maintenance. Prognostic systems commonly use several modules which monitor a system's
performance, detect changes, identify the root cause of the change, and then predict the remaining
useful life (RUL) or probability of failure (POF). Prognostic algorithms can be categorized into three
classes based on the type of information used to make RUL estimates. Type |, or reliability-based,
prognostics utilize historical failure time data; type Il, or stressor-based, prognostics consider operating
and environmental conditions; and type lll, or degradation-based, prognostics incorporate the measured

or inferred condition of the actual system when estimating the remaining system runtime.

Type Il prognostics characterize the lifetime of a specific component or system operating in its
specific environment. As such, these are the only truly individual-based prognostic models. Individual

RUL estimation is the ultimate goal for systems which are expensive, safety-critical, or costly to repair.
2



Individual-based prognostic methods use a measure of degradation to make estimates of RUL.
Degradation measures may be sensed measurements, such as temperature or vibration level, or
inferred measurements, such as model residuals or physics-based model predictions using other sensed
measurements. Often, it is beneficial to combine several measures of degradation to develop a single
parameter. Selection of an appropriate parameter is key for making useful RUL estimates; however, this
area of research has been conspicuously lacking in published literature. Typically, identification of a
prognostic parameter is left to expert analysis, visual inspection of available data, and knowledge of the
degradation mechanisms. This approach is tedious and costly, and scales with the number of available
data sources and possible fault modes. Parameter features such as trendability, monotonicity, and
prognosability can be used to compare candidate prognostic parameters. Trendability measures how
well each parameter in a population is described by the same underlying function. Monotonicity
indicates the degree to which a population of parameters is always increasing or decreasing. System
damage is generally assumed to be cumulative; because the prognostic parameter tracks degradation as
a function of duty cycles, a change in slope would indicate system self-healing. Finally, prognosability
characterizes how well defined the critical failure threshold is. Ideally, a prognostic parameter should
cross a large range and fail at a well-defined value to allow for extrapolation. With this formalized set of
metrics to characterize the goodness of each candidate parameter, traditional optimization methods can
be used to automate the identification of prognostic parameters, such as gradient descent methods,
genetic algorithms, and machine learning techniques. This automation reduces active model

development time and ensures that an optimal or near-optimal prognostic parameter can be found.

Prognostic system development has been a daunting task for several reasons. One is that high
value systems are rarely allowed to run to failure once degradation has been detected. This makes the
existence of fault-to-failure data rare and the development of degradation-based models difficult.
However, current individual prognostic techniques necessitate the availability of a population of
exemplar degradation paths for each fault mode of interest. In the absence of real-world data, high
fidelity physics of failure models may be used to simulate these paths, but these, too, are rare. Second,
if components are allowed to degrade to failure and the failure mode is common, it is often designed
out of the system through a continuous improvement process. However, some failure modes are

unavoidable, such as pump cavitation or heat exchanger fouling in nuclear power plants. Third, very few
3



legacy systems have the instrumentation required for prognostics. Again, accurate physics of failure
models may be used for prognostic system development if they are available, and legacy systems may
be re-instrumented to allow for future collection of key data sources. Faced with these and other
challenges, evaluation of system health has historically focused on more pedestrian methods, such as

time to failure analysis.

Traditional reliability analysis, termed Type | prognostics, uses only failure time data to estimate
a time to failure distribution. As equipment components become more reliable, few failure times may
be available, even with accelerated testing. Although failure time data becomes more sporadic as
equipment reliability rises, often other measures are available which may contain some information
about equipment degradation. Lu and Meeker [4] developed the General Path Model (GPM) to assess
equipment reliability using these degradation measures, or appropriate functions thereof. This method
was originally proposed to move reliability analysis from failure time to failure mechanism analysis. It
has since been extended to prognostic applications [5-8]. The GPM assumes that there is some
underlying parametric model which describes component degradation. The model may be derived from
physical models or directly from available historical degradation data. Typically, this model accounts for
both population (fixed) effects and individual (random) effects. Most commonly, the fitted model is
extrapolated to some known failure threshold to estimate the RUL of a particular component. By
combining the historically determined degradation model with the appropriate degradation measures
from the current component or system, the GPM can be used to make truly individual-based prognostic

estimates.

A key component missing from the published prognostics research is a method to identify the
optimal prognostic parameter for such an extrapolation. This work attempts to fill that hole by
developing a methodology for automatically identifying prognostic parameters from data. The following
dissertation presents the research completed to develop an automated method for fusing multiple data

sources for individual-based prognostics.



1.1 Problem Statement

Type Ill, or degradation-based, prognostic algorithms are the only truly individual-based
estimation methods. Making RUL estimates based on the actual condition of a specific component or
system is considered the ultimate goal for safety critical, high risk, and high value systems. Because
these algorithms involve trending some measure of degradation herein called a prognostic parameter,
identification of an appropriate prognostic parameter is paramount to model performance. Despite the
importance of this task in developing individual based prognostic models, it has been conspicuously

overlooked in the published literature.

Appropriate measures of degradation do not have to be a directly measured parameter. These
measures could be obtained through a function of several measured variables that provide a
qguantitative measure of degradation. It could also be an empirical model prediction of a key system
degradation that cannot be measured. For example, pipe wall thickness may be an appropriate
degradation parameter but there may not be an unobtrusive method to directly measure it. However,
there may be related measurable variables that can be used to predict the wall thickness, such as
temperature, pressure, and flow rate. In this case, the degradation measure is not a directly measurable
parameter, but a function of several measurable parameters. Several measures of key degradation

sources may be combined to provide a robust prognostic parameter for estimating RUL.

Commonly, identification of prognostic parameters is left to expert analysis and engineering
judgment. If any first-principle, or physics of failure, information is available about the system, this
knowledge can also be used to inform parameter identification. In the absence of any specific
engineering knowledge of the system, however, parameters are typically identified through visual
inspection of the available data. Both of these methods are time consuming, tedious, and expensive,
and the effort necessary for identifying parameters compounds with additional data sources, fault

modes, failure mechanisms, and confounding factors such as discrete operating conditions.

Because the effort needed to identify appropriate prognostic parameters from data can quickly
make the problem intractable for a manual approach, an automated approach which results in an

optimal, or near-optimal, parameter is very attractive. Developing this methodology is the focus of this



research.  Prognostic parameter suitability metrics are defined to capture the monotonicity,
prognosability, and trendability of a population of prognostic parameters. These metrics can be used
with any traditional optimization routine to identify an appropriate prognostic parameter; Genetic
Algorithm optimization is used here. A feature selection method is developed and applied to reduce the
computational load of the optimization routine when many sources of data are available. Finally, the
identified parameter is applied to a GPM prognostic model with Bayesian updating to give prognostic

estimates.

1.2  Original Contributions

The research described herein culminates in several original contributions to the field of
empirical-based prognostic methods. These contributions lie mainly in the area of identifying prognostic
parameters from many data sources for use in individual-based prognostics. Additionally, a platform
was developed to aid in the rapid prototyping of prognostic models for many different situations. The

main foci of these contributions are enumerated here.

1. Development of a set of metrics to characterize the suitability of a population of
parameters for application to the GPM prognostic method, namely monotonicity,

prognosability, and trendability.

2. Development of an automated routine to use the proposed suitability metrics to identify
an optimal or near-optimal prognostic parameter, including an input selection method
to remove un-useful data sources in order to alleviate the computational burden of the

optimization routine.

3. Development of the MATLAB-based Process and Equipment Prognostics (PEP) toolbox to
facilitate application of the three types of prognostics to general prognostic model
development. Methods to aid in, and to some extent automate, prognostic model
development are also included in the PEP toolbox, such as the prognostic parameter

identification routine.



1.3 Organization of the Document

The next chapter reviews the relevant literature in prognostics algorithms and applications. The
structure of the PEP toolbox and its integration with the previously developed Process and Equipment
Monitoring (PEM) toolbox is given. Additional information about the PEP toolbox can be found in
Appendices C and D. The next chapters outline the specific problem addressed by this work and the
methodology proposed to solve this problem. Finally, the results of application of this methodology to
two publicly available data sets are given. The first application involves the simulated turbofan engine
data used in the PHM ’08 Prognostics Challenge Problem; the second application uses milling machine
wear data collected in a laboratory setting. Concluding remarks, as well as proposed areas of future

work which do not fall under the scope of this dissertation, are also given.



2 Literature Survey

Compared to the more established areas of condition monitoring, fault detection, and
diagnostics, prognostics is a fairly immature field. As such, scholarly publications concerning prognostics
have focused on the need for prognostics [1, 9-12], the challenges in prognostic model development [1],
the many and varied applications of prognostics [8, 13-32], etc. In fact, in many cases, papers purported
to study prognostics consider only monitoring, fault detection, and diagnostics while pointing to
prognostics as an area of future work or simply overlooking the estimation of RUL as a key function of
prognostics [11, 24, 33-37]. Only in recent years have specific prognostic methodologies and

applications been presented. These papers will be discussed in more detail in subsequent sections.

One cause for the confusion in developing and applying prognostic methodologies is the lack of
a unified definition of Prognostics. For instance, the Joint Strike Fighter (JSF) research group includes
fault detection and isolation, enhanced diagnostics, material condition assessment, performance
monitoring, and estimation of remaining useful life under the umbrella of prognostics [9]. However, this
collection of activities seems better suited to the common moniker of Prognostics and Health
Management (PHM) or the program suggested by the U.S. Deputy Under Secretary of Defense for
Logistics and Material Readiness, Condition Based Maintenance plus (CBM+) [10]. Sheppard, Kaufman,
and Wilmering [38] review the relevant standards in IEEE and other organizations related to prognostics
and highlight the importance of predicting RUL as a key feature of prognostics; however, they propose
no single, unifying standard for prognostics. For this research, a more specific definition of prognostics
will be used, namely estimation of RUL and associated uncertainty. Because fault progression is not
deterministic, it is impossible to estimate the RUL exactly. Any RUL estimate given by a prognostic
algorithm should be accompanied by an estimate of the uncertainty, giving a confidence interval during
which failure is expected to occur or a POF distribution. Prognostics applications in the literature are
often remiss in this aspect of the analysis; however, the importance of uncertainty estimation is widely

discussed [9].

Because prognostics is defined as an estimate of the RUL of a system, the time of failure must

also be explicitly defined. Two types of failure are commonly considered: hard failure and soft failure



[39]. Hard failure is generally considered to have occurred when a product stops working, e.g. an
incandescent light bulb burns out or a car tire pops. In hard failure, failure time does not usually occur
at a particular degradation level. Instead, loss of functionality occurs at widely varying levels across
units. These failures are generally modeled as random failure. Conversely, soft failures are said to have
occurred when the degradation level of a system reaches some predefined critical failure threshold, e.g.
light output from fluorescent light bulbs decreases below a certain level or car tire tread is below some
specified depth. These failures generally do not concur with complete loss of functionality, as in hard
failure; however, they correspond with the time when an operator is no longer confident that
equipment will continue to work to its specifications. Soft failures, or non-catastrophic failures, are the
failures of interest in this research. System degradation can be monitored and trended to make
estimates of RUL due to soft failures, whereas hard failures are random in nature and usually can only

be predicted if some failure precursor can be monitored.

Finally, the exact nature of RUL should be considered. For a failed unit, it is easy to determine
the failure time. It is traditional to consider the RUL at any time before failure to be simply the time
between the current time and the failure time (Figure 2). Some argue that this simplistic approach is
inappropriate. However, Klinger [40] shows that the assumption that failure time is inversely
proportional to the degradation rate is valid for systems which are autonomous in the variable
representing time. That is, the differential equations describing failure for these systems are
independent of any explicit time dependence. The author further argues that this assumption is
generally valid. The inverse relationship should be accepted for systems running under a constant load
and environment. In some systems, the operating conditions can be altered to mitigate degradation; in
this case the system is not autonomous in time and the inverse relationship is not valid. This more
complicated RUL relationship can be seen in Figure 3 [41] where a large shock reduces the RUL
significantly. Had this shock not occurred, the circuit board under test could be expected to continue to

perform for the originally estimated lifetime.

A significant portion of the published literature in prognostics research focuses on solutions to
specific problems, such as electronic prognostics [13-16], vibration analysis [18-20], helicopter gearbox

monitoring [8, 17, 21-23, 32], JSF applications [24-31], etc. While this approach may result in very good
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point solutions for these specific problems, generic prognostic algorithms which may be more broadly
applicable are of more interest. The goal in developing generic prognostic algorithms is to develop
methods which may be rapidly configured for a new system to allow for effective and efficient

deployment of CBM technology on large, complex systems [42].

The following sections discuss specific areas of the prognostics work reported in the literature.
First, prognostics as a component of a larger health monitoring system is discussed, such as that
suggested by the JSF research group. The next section discusses prognostic algorithms, classifying them
into three types based on the information used to make prognostic estimates. Then, metrics for
evaluating prognostic model performance are outlined. Finally, data fusion methods for combining

information for making prognostic estimates are covered.

2.1 Prognostics in Health Monitoring

Prognostics is one component in a larger health monitoring system which also includes system
monitoring, fault detection, and diagnostic modules. Full health monitoring systems, also called
Condition Based Maintenance (CBM) systems, are the focus of much research. Kothamasu, et al. [43]
describe prognostics as part of a full CBM system. The authors describe using prognostic estimates to
aid maintenance scheduling and planning; they also suggest prognostics for optimal control algorithms.
Pipe [44] and Hess, et al. [9] suggest the use of RUL estimates for maintenance planning and logistics
systems. Callan, et al. [45] outline a five-step CBM system which includes: Data Acquisition, Data
Manipulation, Condition Monitoring, Health Assessment, and Prognostics. By applying the entire suite
of modules, one can accomplish the goals of most prognostic systems: increased productivity; reduced
downtime; reduced number and severity of failures, particularly unanticipated failures; optimized
operating performance; extended operating periods between maintenance; reduced unnecessary
planned maintenance; and reduced life-cycle cost. Figure 4 gives a diagram of a typical health
monitoring system. Data collected from a system of interest is monitored for deviations from normal
behavior. Monitoring can be accomplished through a variety of methods, including first principle
models, empirical models, and statistical analysis [46]. The monitoring module can be considered an
error correction routine; the model gives its best estimate of the true value of the system variables.

These estimates are compared to the data collected from the system to generate a time-series of
11



residuals. Residuals characterize system deviations from normal behavior and can be used to determine
if the system is operating in an abnormal state. A common test for anomalous behavior is the
Sequential Probability Ratio Test (SPRT) [47]. This statistical test considers a sequence of residuals and
determines if they are more likely from the distribution that represents normal behavior or a faulted
distribution, which may have a shifted mean value or altered standard deviation from the nominal
distribution. If a fault is detected, it is often important to identify the type of fault; systems will likely
degrade in different ways depending on the type of fault and so different prognostic models will be
applicable. Expert systems, such as fuzzy rule-based systems, are common fault diagnosers. Finally, a
prognostic model is employed to estimate the Remaining Useful Life (RUL) of the system. This model
may include information from the original data, the monitoring system residuals, and the results of the

fault detection and isolation routines.

Many prognostic algorithms have been proposed; these will be discussed in more detail in
following sections. Despite the many differences between these algorithms, they all have several
common features [1, 9, 48]. Prognostic systems must naturally build on monitoring and diagnostic
systems. It is near impossible to determine the failure time of a device without first detecting and

identifying a failure-causing fault.
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Figure 4: Suite of Modules in a Health Monitoring System
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This leads to the first requirement of a prognostic system: notice period [48]. Also called lead time or
fault-to-failure time, the notice period is the amount of time between fault detection and predicted
failure. It is easy to agree that in most cases a prognostic system which gives only a few seconds of
notice before an impending failure is virtually worthless. The notice period must be sufficiently long to

allow for operator action, maintenance, automatic reconfiguration, etc.

Beyond this sensitivity, this also means that fault progression must be sufficiently slow for detection,
diagnosis, and prognosis to occur with an acceptable notice period. That is, a precipitating fault must
occur and become detectable a reasonable time before the resulting failure. This implies an assumption
of most prognostic systems: monotonic fault progression. Most prognostics systems assume that once a
fault occurs, a failure will also predictably occur in the absence of human intervention; that is,

prognostic systems assume that faults cannot self-heal.

A final requirement specific to data-driven prognostics systems is the availability of failure data,
specifically several instances of the same type and trend for each failure mode of interest. Failure
modes must be carefully identified to differentiate between different fault types and fault progression
rates. Similar failure modes which progress at different rates should often be considered different
failures. Because of individual, random differences and noisy measurements, it is important to collect
many historical fault progressions for each failure mode of interest in order to build a robust and

complete prognostic system.

Several procedures have been outlined for developing prognostic systems [49-52]. The specific
methodologies vary in the breakdown of steps necessary, but they all generally include the same 3

steps, often subdivided into a total of five to seven steps:

1. Identify important failure modes. This may be accomplished through a failure modes
and effects analysis (FMEA) which identifies possible failure modes for a system and

ranks them according to severity of failure and risk of occurrence.

2. Identify key parameters that need to be monitored in order to detect and identify these

failure modes. This step is sometimes governed by the funds available for the
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monitoring sensor suite, the effects sensors may have on performance, and the

availability of accurate sensors.

3. Identify and develop appropriate methods to monitor the key failure modes. This may
include a variety of approaches, including canary devices or a prognostic algorithm.
Typically, one prognostic model should be developed for each anticipated failure mode;

significant accuracy may be lost by lumping multiple fault modes into one model.

Prognostic algorithms can be classified in many ways. The following section suggests a
classification based on the type of information used to make prognostic estimates: reliability-based,
stressor-based, or condition-based. Prognostic algorithms, like all modeling methods, can also be
classified as physics-based or empirical. The following sections touch on both types of models; however,
the PEP toolbox and the current research focus on empirical prognostics methods. Physics-based
models, also called physics of failure models or first principle models, can be expensive and tedious to
develop. Often times, the underlying physical processes leading to failure are not completely
understood, and simplifying assumptions must be made to facilitate model development. Assumptions
made in model development may not be fully applicable to real world systems, which limits the
applicability of physics of failure models. In addition, these models are often very computationally
expensive, particularly if Monte Carlo simulations are used to estimate confidence intervals about model
predictions. Empirical models, on the other hand, use data to fit a model to the relationships seen in
real world operation. These models typically provide no additional information about the physical
mechanisms leading to failure. Empirical models are preferable to physics of failure models because
they are simple to develop, they capture real world relationships, and they require no expertise in the
underlying physical phenomena leading to failure. Empirical models have several drawbacks, though.
These models rely on operational data for model development. As such, the models are generally only
applicable to systems operating within the range of the training data used in model development. This
poses additional problems for prognostics models, which rely on run-to-failure data for model training.
Very few expensive or safety critical systems are allowed to run to failure; in this case, physics of failure
models may be used to simulate failure data for model development. Often, failure data which is

available may be the result of accelerated life testing performed during the product design phase.
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Several methods are available for extracting useful data which describes actual operation from
accelerated testing data [53, 54]. Lemoine and Wenocur [55] give a comprehensive overview of failure
modeling. Tang and Chang [56] use the Eyring model to explain degradation measure dependence on
accelerated factors. Park and Padgett [57] describe a method for extracting information from
accelerated degradation testing with multiple degradation factors. By applying these methods, it is
possible to utilize accelerated life test data collected during product design and development phases for
prognostics applications. However, care must be given to ensure that the failures seen during
accelerated testing are analogous to real-world failures. Accelerated testing conditions can result in
fault modes which only occur under the accelerated conditions. The following sections discuss a variety
of prognostic models, both physics-based and empirical, classified according to the type of data used to

make prognostic estimates.

2.2 Prognostic Algorithms

As suggested by the “No Free Lunch” Theorem, no one prognostic algorithm is ideal for every
situation [58, 59]. A variety of models have been developed for application to specific situations or
specific classes of systems. The efficacy of these algorithms for a new process depends on the type and
guality of data available, the assumptions inherent in the algorithm, and the assumptions which can
validly be made about the system. As such, these prognostic algorithms can be categorized according to
many criteria. One proposed categorization focuses on the type of information used to make prognostic
estimates; this results in three classes of prognostic algorithms (Figure 5) [1, 60]. Type | prognostics is
traditional time to failure analysis; this type of prognostic algorithm characterizes the expected lifetime
of an average system operating in an historically average environment. These methods may be applied
if no data specific to the current system is available. Examples of Type | prognostics include Weibull
analysis, exponential or normal distribution analysis, and nonparametric distribution analysis. A readily
apparent shortcoming of this group of methods is the absence of consideration for operating conditions
and environment in making RUL estimates. Typically, systems operating in harsher conditions will fail
more quickly while those in milder environments more slowly. Type Il, or stressor-based, prognostics
use operational and environmental condition data to estimate RUL. This type of prognostics

characterizes the lifetime of an average system or component operating in the specific environment.
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Type Il methods can be used if operating conditions, such as load, input current and voltage, ambient
temperature, vibration, etc., are measurable and correlated to system degradation. Algorithms in this
class include specific formulations of the Markov Chain model, shock model, and proportional hazards
model, and the path classification and estimation (PACE) [61, 62] or weighted path prognostics (WPP)
method. Although more specific than Type | models, Type Il models are deficient because they neglect
unit-to-unit variance which may be due to manufacturing-, installation-, and maintenance action-
variability. The final class of algorithms, Type lll or condition-based, prognostics, characterize the
lifetime of a specific unit or system operating in its specific environment. Extrapolation of a general path
model (GPM) is the most common Type Ill method. GPM extrapolation involves trending a prognostic
parameter and extrapolating it to some predefined failure threshold. A prognostic parameter is a
measure, either directly sensed from the system or inferred from a set of sensor readings, which
characterizes system degradation or health. System failure is commonly indicated by a soft failure
threshold at which the system no longer performs to its specifications or cannot be expected to perform
for an appreciable amount of time; this is generally some point before a catastrophic failure occurs. A
Bayesian updating technique has been developed to incorporate prior knowledge in the model. Type llI
prognostics are the only truly individual-based prognostic type. This is generally considered the ultimate
goal of prognostics for safety-critical components and systems. Each of these classes of prognostic

algorithms, as well as appropriate model architectures, is discussed in the following sections.
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Figure 5: Prognostic Algorithm Categorization
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2.2.1 Type I: Traditional Time-to-Failure Analysis

Type | methods are a simple extension of traditional reliability analysis, based entirely on an a
priori distribution of failure times for similar systems in the past. Prognostic algorithms in this class
characterize the average lifetime of an average system operating in historically average conditions; they
do not utilize any information specific to the system at hand. The main assumption made when applying
Type | methods is that future systems will operate under similar conditions to those seen in the past and

will fail in similar ways.

Typically, Type | prognostic models track a population of systems over their lifetime and record
only the failure time of each system. In addition, the total runtime of each system which hasn’t failed at
the end of the observation is recorded; this is called censored data and is also included in the analysis. A
probability distribution is fit to these runtimes to give an estimate of the time of failure (ToF)
distribution of the population. The most common parametric model used in reliability analysis is the
Weibull distribution. This model is used because it is flexible enough to model a variety of failure rates.
The formula for the failure rate (eqn. 1) is a two parameter model with a shape parameter () and a

characteristic life (8):

B-1
il

These two parameters provide the modeling flexibility for components exhibiting an increasing failure
rate (P>1), a constant failure rate (f=1), and a decreasing failure rate ($<1). With the correct choice of
shape parameter, the Weibull distribution adequately models the exponential, normal, or Rayleigh
distributions. Examples of different shape parameters are given in Figure 6. Additional information on

Weibull modeling is available in [63].

Traditional reliability methods consider only the total runtime of a system and the historic total
lifetimes of similar systems. However, several methods are available to include additional information
in reliability analysis, which may make it more useful for prognostics. Yang and Xue [64] suggest a
method for analyzing both catastrophic and soft failures simultaneously using random process

simulation and state tree analysis.
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Figure 6: Weibull Failure Distributions with Different Shape Parameters

Several studies suggest the use of degradation data in estimating reliability distributions. Lu and
Meeker first proposed the General Path Model (GPM) in [1], which shifts reliability analysis from failure
time to failure mode analysis. Improvements to their seminal work are proposed by Girish, Lam, and
Jayaram who used neural networks to estimate the failure times for censored systems [65]; Kharoufeh
and Cox apply Markovian degradation models to estimate the failure time for censored systems [66];
Chen and Zhang attempt to infer the lifetime distribution itself instead of the distribution parameters
from the available data [67]; and Xu and Zhao extend the approach to use multivariate degradation
measures [68]. These algorithms are the basis for the Type Ill prognostic GPM algorithm and are

discussed in more detail in that section.

Most commonly, the Mean Residual Life (MRL) is used to estimate the RUL of a system. For an
unit of age t, the MRL method assumes that the remaining life is a random variable, and the MRL is

given by the expected value of this random variable [69]:

MRL(t) = %}S(u)du
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where S(:) is the survival function and t is the current time. The MRL at time t can be calculated from
either parametric or nonparametric distributions, which makes it particularly flexible for application to

real world data.

Studies applying Type | prognostics to estimation of RUL have shown the method to be
unsatisfactory [70, 71]. This is to be expected since the MRL method assumes that the remaining life is a
random variable; clearly it is not. In fact, because mean residual life is an “average” measure, it is
expected to underestimate RUL about half the time and overestimate RUL about half the time. Vichare,
et al. [72] show that Type | methods are insufficient for electronic prognostics; the authors go on to
suggest that in situ monitoring of operating conditions, such as temperature, humidity, vibration, and

shock, may improve prognostic model performance. This leads to Type Il prognostic methods.

2.2.2 Type II: Stressor-based Prediction

As suggested by [72-74], it is intuitive to consider usage conditions, both past and future, when
estimating the RUL of a system. Type Il methods attempt to do this by characterizing the lifetime of an
average component operating in the specific environment. Here, it is assumed that systems operating in
the same conditions will fail in similar ways; there is little unit-to-unit variance. Methods which
commonly fall into this category include regression analysis with prognostic monitors [75-79], a specific
formulation of the Markov Chain model [66, 80, 81], Proportional Hazards Models [33, 82, 83], physics-
of-failure models [32, 84-87], and Life Consumption models [41,88]. Studies utilizing each of these

architectures are described below.

2.2.2.1 Regression Analysis

Electronic system prognostics on the board or circuit level commonly utilize a built-in self test
(BIST) prognostic monitor or canary [75-79]. A prognostic monitor is a “pre-calibrated semiconductor
cell that is co-located with the actual circuit on a semi-conductor device” [79]. The prognostic cell is
designed to experience a higher current level than the actual circuit by decreasing the cross sectional
area of the current-carrying path in the canary. Because the canary cell undergoes a higher current
density, it is expected to fail in a predictably faster way than the actual circuit. By locating several

prognostic monitors on a circuit with different known accelerating factors, the failure times of each of
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Figure 7: Use of Prognostic Monitor Failure Times to Estimate RUL of Actual Circuit [79]

the cells can be trended to predict failure in the actual circuit (Figure 7). While this method is
convenient and uncomplicated, Pecht, et al. [89] argue that BIST monitors are not always sufficient for
detecting and identifying failures. The authors found BIST results to suffer from a high false alarm rate
and a low correlation between the fault indicated by the BIST and the actual fault. These shortcomings

should be considered before applying this type of prognostic monitoring module.
2.2.2.2 Markov Chain Models

Markov Chains and Hidden Markov Chains are common in many simulation exercises [80]. The
Markov Chain model is based on the assumption that the next state which a system will occupy depends
only on the current state; past states do not affect the probability of transitioning to a new state. There
are two types of Markov Chain prognostic models, which vary only in the information they use to

simulate possible future states. Type Il Markov Chain models, which will be discussed here, really

include two models.

The first model, called the environmental model, is a Markov Chain simulation which produces
possible future operating state progressions based on transition probabilities seen in the past and the

current operating state. The environment model is needed for making a prediction as to how the
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environment and operating conditions evolve in the future. The environmental model is defined by the

transition probability matrix:
Pun 0 P
pnl “. pnn

where pij is the probability of transitioning from state /i to state j. Often this probability matrix is
assumed to be static, but it is straightforward to extend the method to time-dependent or degradation
level-dependent transition probabilities. This model is used to simulate many possible future state

progressions beginning at the current state.

These state progressions are then mapped to a degradation measure, which is the second model
necessary in the Type Il Markov Chain algorithm. The degradation measure is represented as a function
of observable environmental conditions. To be useful for making a reliability prediction, the function
should reflect the manner in which the environmental conditions affect the component reliability.
Usually, environmental stressors tend to deteriorate the component reliability in a cumulative manner.
Hence, the function to relate the environment conditions to the prognostic parameter is commonly of a

cumulative form:

k
Y(t) = Y g(E(t,.t,+ At))AL,

i=1

where Y(t;) is the degradation measure value at time t;, E(t;, t+At) is the environmental condition

observed at the time interval [t;, t/+At], and g(.) is an appropriate function of environmental conditions.

When the estimated degradation measure is found to cross some pre-defined threshold, failure
is said to have occurred. At each time of interest, many possible state progressions are simulated and
mapped to degradation measures. These measures are then used to define a time of failure (ToF)
distribution for the system. Figure 8 shows a typical progression of the environmental conditions in
time. An example of trajectories is given in Figure 9 in which the function g(.) is assumed to be an

identity function.
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2.2.2.3 Proportional Hazards Model

The Proportional Hazards (PH) Model developed by Cox [90] merges failure time data and stress
data to make RUL estimates. The model uses operating conditions, called covariates, to modify the

baseline hazard rate to give a new hazard rate for the system’s specific usage conditions:

q
Mt;2) = A (t)exp E/J’jzj

j=1
Failure data collected at covariate operating conditions are used to solve for the parameters (f3j)
using an ordinary least squares algorithm. The baseline hazard is the hazard rate when covariates have
little or no influence on the failure rate. A basic assumption of the proportional hazards model is that
the effects of these covariates are multiplicative; this means that when the ratio of two covariates is
evaluated, their hazard rates are proportional. A full discussion of developing a proportional hazards
model can be found in [83]. Dale [82] applied the proportional hazard model to estimation of product
reliability, applying it to heterogeneous data from non-repairable systems. Liao, et al. [33] suggest the
use of proportional hazards models for estimating RUL, though the authors give no specific results of

such an application.

2.2.2.4 Physics of Failure Models

Physics of failure models, or first principles models, are often desirable in engineering
applications because they provide a greater understanding of the mechanisms by which systems and
components may fail. Physics of failure models are also desirable for high-cost, high-risk systems that
cannot be run to failure many times to collect the data needed for development of empirical models
[86]. The use of physics of failure models for estimating RUL has focused mainly on electronic system
prognostics [84, 85]. These models may be readily available for single components or single fault
modes; however, developing accurate physics of failure models for large, complex systems has always
been a daunting task. Physics of failure models often suffer from inaccuracies due to the assumptions
made in developing the model, the inclusion of physical interactions which themselves are not
completely understood, and long runtimes. Kacprzynski, et al. [87] attempt to alleviate the inaccuracies
of physics of failure models by fusing the results with other data sources such as diagnostic results,
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prognostic architectures, inspection information, and real-time system level features. The authors
applied their system to a gear with a seeded fault and found very promising results for the data fusion
technique. In [32], the same methodology was applied to helicopter gearboxes with similar success.
Physics of failure models offer a better understanding of the mechanisms of failure for a component or
system, but they are costly and tedious to develop for large, complex systems which experience many
fault modes. In addition, the run time needed for many damage propagation models may make them
impractical for real-time analysis. For systems with accurate physics of failure models available, it may
be prudent to use these models to simulate system failure data. That simulated data may then be used
to develop empirical models which may be run very quickly. This alleviates the burden of collecting
failure data for expensive or safety critical systems. Physics of failure models are a key component of

Life Consumption Models.

2.2.2.5 Life Consumption Models

Life Consumption models (LCM) were first proposed by Ramakrishnan and Pecht [88] for
monitoring RUL in electronic systems. The LCM methodology monitors the environment of a
component or system during its entire lifecycle to determine the amount of damage incurred by the
various loads and conditions experienced. This damage is translated to lost “life” which is subtracted
from the expected life of an average system or component. The incurred damage is estimated through
physics of failure models; this damage amount is related to a fraction of life lost by considering the total
amount of operation under the same conditions which would result in failure of an undamaged part.
LCM is illustrated in [88] and [41] by application to a mounted printed circuit board operated under the
hood of a moving vehicle. Both temperature and vibration levels were monitored on the board during
use. The methodology was shown to effectively estimate RUL of the circuit board, even in the event of
unexpected damage accumulation caused by a large, random shock. The major drawback of the LCM
methodology is the need for accurate physics of failure models to estimate the accumulated damage.
As mentioned above, physics of failure models are often not available, not accurate, or not time-
effective for large, complex systems. Development of a more general LCM methodology which utilizes
empirical models, such as neural networks, kernel regression models, or simple regression, for damage

estimation would increase the applicability of this algorithm.
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2.2.3 Type III: Degradation-based Prediction

Finally, the last category of prognostic algorithms attempts to characterize the lifetime of the
specific system operating in its specific environment. These methods are termed degradation-based (or
condition-based). The most common method in this class is the General Path model (GPM), which is
described in great detail later. Basically, the GPM attempts to track some measure of degradation called
a prognostic parameter and extrapolate it to failure [1-8, 11, 24, 91-93]. This measure may be
something measured directly from the system that gives information about system condition and fault
severity, or it may be inferred from measurements made on the system. The specific details of this
method are left to later sections because it is the focus of this work; however, fundamentals and results
of this algorithm given in the literature are summarized here. Additional algorithms included in Type Il

prognostics are a different formulation of Markov Chain models [60, 94, 95] and Shock models [96-98].

2.2.3.1 Parametric Methods

The General Path Model (GPM) was first proposed by Lu and Meeker [1] to move reliability
analysis from failure time to failure mode analysis. Extension of their original methodology to
prognostics is discussed in detail in later sections. The first work to make this extension was by
Upadhyaya, et al. [5]. The authors in that work apply traditional regression models and neural networks
to trend system degradation. In later years, the extrapolation methodology of traditional regression
models was applied to helicopter gearboxes [8], flight control actuators [92], aircraft power systems
[24], computer power supplies [91], and global positioning systems [7]. In addition, work by Chinnam
[6] applied the GPM methodology to feed forward neural networks for estimating degradation levels.
Each of these studies attempt to model a degradation measure and extrapolate it to some pre-defined
threshold to estimate the system RUL. Only a few of the studies consider the problem of uncertainty
measurements [8 91, 92]. The studies tend to take two approaches to uncertainty estimation.
Uncertainty measurements in [91] and [8] are estimated based on the model architecture used to make
the prediction, while Byington, et al. [92] utilize Bayesian belief models to estimate the uncertainty. In
addition, bootstrap methods can also be used to make uncertainty estimates. If accurate physics of
failure models are available, these may be used to trend the system degradation. In these models, the

physics of failure model utilizes measurements directly from the system of interest to estimate the
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hidden damage [93]. Here, the authors utilize a residual monitoring system to estimate the hidden
damage in a system; this basic methodology can be applied to physics of failure models or empirical
models. As in the previous discussion, Type lll physics of failure models suffer from difficulty in
development, inaccuracies due to the assumptions made in model development, and long runtimes.
However, if accurate physics of failure models are available, they can be applied to prognostic

algorithms and used with the GPM methodology.

Greitzer, et al. [12, 52, 99] propose a slightly different formulation of the GPM, which he coined
the Life Extension Analysis and Prognostics (LEAP) method. LEAP differs from GPM primarily in that it is
a short-term regression model. Instead of regressing a model onto the entire operating history of a
system or component, LEAP utilizes some recent window of data for the regression. Although using
more data tends to lead to more stable predictions, using the entire operating history may mask recent
changes in behavior which are of critical importance. While these predictions have greater variability,
they tend to be more sensitive to recent and abrupt changes in condition, as seen in Figure 10. The
LEAP methodology is proposed as a Type |l method using operating conditions to estimate some figure
of merit and then trending that figure of merit to failure. However, the extension to Type Ill prognostics
is clear, where the figure of merit is directly measured or inferred from direct measurements of the
system. This methodology is an improvement on the traditional GPM in that it is more sensitive to
abrupt changes, but it is also less robust to noisy measurements. ldentification of an optimal window

size for regression is a critical task in applying this technique.

As mentioned previously, Markov Chain models can fall into the Type Il or Type Il category.
While Type Il Markov Chain models use the Markov assumption to generate possible future operating
condition progressions, Type lll Markov Chain models use the Markov assumption to generate random
shock arrival times based on the current degradation level [60, 94, 95]. These random shocks contribute
some deterministic amount of degradation, usually one unit, to the degradation measure. The time of

failure is calculated as the time when this simulated degradation measure crosses the failure threshold.

At each time of interest, many degradation paths are simulated, and a probability of failure
distribution is estimated from the collection as shown in Figure 11. The Markov Chain model is

continuous in the time domain, but discrete in the degradation measure. A more general formulation is
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the Shock model [96-98]. Instead of experiencing some known amount of shock at each random shock
occurrence, the shock model allows for a shock of random size. In this model, the time between
random shocks is a continuous variable, with the probability of shock often determined by the current
degradation state, the operating conditions, or some combination thereof. The size of the shock may be
based on a single shock size distribution, or other features such as the current degradation measure, the
operating condition, or other measures available from the system may define it. Again, when the
cumulative degradation measure crosses some pre-determined threshold, failure is said to have
occurred; a probability of failure distribution is estimated from multiple simulated degradation

measures.

2.3  Data Fusion for Prognostics

In any CBM system, many data sources are available for making prognostic estimates. These data
sources may be redundant, such as measurements from a group of redundant sensors; as
measurements from different subsystems within the same system. The main concern in any attempt at
combining these data sources is to avoid producing a fused result which performs worse than the best
performing constituent result [100]. This can happen if data sources with little or no prognostic
capability are included in the data fusion set. Several data fusion techniques have been proposed

specifically for application in prognostic algorithms. These will be briefly described here.

Jardine, et al. [101] explain the need for appropriate data fusion methods, stating “When
multiple sensors are used, data collected from different sensors may contain different partial

”n

information about the same machine condition.” The authors describe two classes of fusion methods:
instantaneous and convolutive. Instantaneous methods involve time-independent, or memoryless,
mixing functions; convolutive methods include some time dependence. Choi and Li [102] apply
instantaneous mixing functions to fuse time and frequency data to estimate crack size in gear tooth
traverse cracks. Goebel and Bonissone [102] use PCA-based data fusion methods to give a strong
prognostic indicator when none is available in the data. Their method includes data analysis, PCA,
adaptive network based fuzzy inference, and trending analysis. They apply the method to constant load,

wet-end papermill breaks. The resulting model minimizes false alarms and provides adequate coverage

of multiple types of breaks resulting from unknown causes.
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Roemer, et al. [100] attempt to optimize data fusion results by reducing false alarm rates,
increasing confidence levels in fault detection, and optimizing time to failure predictions. The authors
specify three types of data fusion: feature creation, feature combination, and knowledge fusion. They
specify knowledge fusion as a method to incorporate legacy information, physical model predictions,
and signal-based information to improve prognostic estimates. The authors give an overview of
common data fusion methods, including Bayesian Inference, Dempster-Shafer Method,
Weighting/Voting Fusion, Fuzzy Logic Inference, and Neural Network Fusion. The authors illustrate the
application of these methods to engine test cell sensor validation. They do not present results specific to

prognostic applications.

Hughes, et al. [104] combine multiple fault mode indicators using traditional logical tests. They
compare the performance of logical ‘OR’ tests and rank sum tests. These methods are used to reduce
false alarms and improve fault isolation result. They apply their approach to disk drive failures. The

two logical tests gave similar performance for each of the cases studied.

Wang and Coit [105] use joint PDFs to determine when any one of a collection of degradation
measures crosses its threshold. They apply their methodology to reliability prediction based on
degradation modeling of multiple degradation parameters. This allows for the combination of the
information from multiple degradation models. The authors apply their methodology to simulated
degradation data. Though the method is proposed for reliability monitoring, extension to prognostics is

straightforward.

Several methods for prognostic estimation have been described in the previous sections,
including algorithms in each of the three types: reliability-based, stressor-based, and degradation-based.
Data fusion methods which have been applied to prognostics have also been described. Because a
plethora of diverse algorithms and methodologies is available for prognostic estimation, it is necessary

to develop a set of performance metrics by which the models can be compared.

2.4 Metrics for Evaluating Algorithm Performance

A major area of ongoing research in prognostics is model performance characterization.

Performance metrics are necessary to allow model developers to compare two competing models, to
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understand the validity of a prognostic estimate, and to characterize model performance over different
operating regimes, fault modes, or systems. Performance metrics for monitoring, fault detection, and
diagnostic systems are well established [106], including accuracy, robustness or auto-sensitivity, spill-
over or cross-sensitivity, fault detectability, uncertainty measures, fault detection time, and false
alarm/missed alarm rates. Appropriate prognostic performance metrics, however, are less understood.
Research in prognostic model performance metrics has focused on three areas: algorithm performance,
computational speed, and economic incentive metrics. Obviously, it is desirable for prognostic
algorithms to make accurate and precise RUL estimates. However, by the very nature of prognostics,
these estimates ideally are made in an online fashion, which means the algorithm must have an
acceptably short computation time. This is of particular import for systems which intend to have real-
time data collection and RUL estimation running during system use. Metrics to characterize the
computational cost of prognostic algorithms include complexity [107], specificity [108], CPU time [109],
and “Big O” runtime notation [110]. It seems reasonable to assume that, given ample funds, the rate of
increasing computer speed, and the use of more sophisticated computational methods [111], a system
will be available to make an RUL prediction in any prescribed time frame. Economic metrics, such as
Return on Investment (ROI), may consider model performance in making cost benefit analyses [95, 109,
113, 114]. Generally, these analyses show that PHM systems decrease maintenance costs, while
increasing availability and improving safety. However, these metrics are primarily intended for a

management group and are not considered model performance metrics for this research.

Measures of prognostic algorithm performance are of more interest to the current research.
Current research largely focuses on method development; however, algorithm performance metrics
have been the focus of several studies in recent years [48, 108, 109, 114, 116, 117]. Each of these
studies resulted in different, and sometimes competing, performance metric definitions. However, each
study highlights key shortcomings in traditional performance metrics. Prognostic algorithm
performance metrics tend to fall into one of two categories: accuracy metrics or precision metrics. The
field, however, is plagued by a problem common to many areas of prediction: “The more precise the
remaining life estimate, the less probability that this estimate will be correct” [1]. Bearing this in mind,
prognostic algorithm performance measures must be developed which will allow researchers and

developers to accurately choose between competing prognostic models.
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Unlike monitoring system models which produce one estimate of the system value at each point
in time, prognostic models result in a time-series of RUL estimates. That is, the same value is being
estimated at each prediction. In general, we are willing to suffer large errors and uncertainties early in
life if a model will provide better performance as the system approaches failure [48, 109, 117].
Traditional error measures do not account for these progressive acceptable accuracy and precision
levels. Saxena, et al. [109] suggest several metrics to account for this, the most interesting of which are
the a-\ performance metrics for accuracy and precision. The a-A performance dictates that the
accuracy (or uncertainty) should be within some specified a*100% of the actual value within a relative
distance, A, to the actual failure, as shown in Figure 12. The formulation proposed by the authors gives
a true or false value for the a-A performance; namely, are the algorithm predictions correct to within
0.*100% at the A-relative distance to failure. It may be more useful to consider when the algorithm is

within the a*100% precision level or the fraction of time that the algorithm is within this requirement.

In addition to concerns about the importance of correctly accounting for temporal needs,
prognostic models that predict that failure will occur before actual failure are generally considered
better than those that predict failure will occur after the actual failure. RUL estimates greater than the
actual remaining life leave room for unexpected failures and unplanned maintenance. Saxena, et al.
[109], suggest an exponentially weighted accuracy metric to account for this, which gives more weight
to late predictions and less weight to early predictions. This metric considers the RUL predictions made
at one point in time, instead of the entire time series of predictions. A similar error metric was used in

the 2008 PHM data challenge [118].

Although it is not generally applicable, for systems with known RUL, the model accuracy for a

specific system at any given prediction time can easily be measured by the absolute percent error:

A _ |R ULactual - RUL

RUL

estimated

actual

The accuracy of the model can be calculated across a population of systems as the mean absolute
percent error (MAPE) at a given prediction time (or fraction of total life). This gives a time series of

expected accuracy for the algorithm. Along with the measure of accuracy, a measure of RUL uncertainty
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should be included. This uncertainty estimate may be derived from the specific model architecture or
estimated through a Monte Carlo bootstrap method; these methods of uncertainty estimation are

described in great detail in [106, 119, 120].

This chapter has given an overview of the related prognostics research available in the open
literature. The next chapter discusses the Process and Equipment Prognostics (PEP) toolbox that has
been developed to aid in fast prototyping of prognostic models of the three types. The following
chapters identify the specific need remaining in prognostics research which is addressed by this

dissertation and the methodology developed to address this need, and results of its application.
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3 The Process and Equipment Prognostics Toolbox

Development of an integrated health management system can be daunting because of the high
level of complexity involved in identifying appropriate algorithms at each stage. To support this, a suite
of MATLAB-based toolboxes have been developed at the University of Tennessee PROaCT lab with a
range of monitoring, fault detection and prognostic capabilities. The Process and Equipment Monitoring
(PEM) toolbox was developed to facilitate auto-associative modeling of process and system data, and
fault detection [121]. The PEM toolbox includes auto-associative kernel regression models, auto-
associative neural networks, and linear regression models for system monitoring; and sequential
probability ratio test and error uncertainty limit monitoring fault detection methods. The results of both
of these modules, as well as an independently developed diagnostic module if available, can be used to
facilitate prognostic analysis. The Process and Equipment Prognostics (PEP) toolbox is a MATLAB-based
toolbox developed to aid in development of empirical prognostic models of each of the three types. The
PEP toolbox is designed to integrate with the previously developed PEM Toolbox. The results of process
monitoring and fault detection produced by the PEM toolbox as well as the original system data are

utilized by the PEP toolbox to make RUL predictions for the system, as shown in Figure 13.

The purpose of the PEP toolbox is to provide a complete set of tools to facilitate prognostic

model development. A myriad of prognostic algorithms have been developed which use a variety of
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Figure 13: Integration of the PEM and PEP Toolboxes
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information sources, models, data processing algorithms, etc. Typically, prognostic model development
depends highly on the expertise of the developer. The PEP toolbox reduces the development burden on
the system designer and facilitates the rapid development of competing models. As described in the
previous chapter, prognostic algorithms can be classified by the type of information used to make RUL
estimates. Algorithms in each of the three classes are included in the PEP toolbox. Appendix C gives a
list of the functions currently included in the PEP toolbox, as well as the current code, including the help
header, for each function. Appendix D includes an example application of the PEM and PEP toolboxes
for health monitoring of the turbofan engine data presented in the 2008 PHM Challenge. The appendix
includes the code used to develop the health monitoring system using the PEM and PEP toolboxes; the
application of three prognostic models, one of each of the three types, to the PHM challenge data; and

the resulting output and plots where illustrative.

3.1 Type I: Reliability Data-Based

These methods consider historical time to failure data which are used to model the failure time
distribution. They estimate the life of an average component operating under historically average usage
conditions. The PEP toolbox includes several statistical analysis techniques for Type | prognostics:
Weibull, exponential, and Gaussian distribution models. Because of its flexibility in modeling infant
mortality, random failure, and wear-out failure, the Weibull distribution is used most commonly for
reliability analysis. These methods do not consider any information specific to the current system,
except the total runtime without failure. Type | algorithms result in a distribution of possible failure

times; the RUL for a system is determined as the MRL at the current lifetime.

3.2 Type II: Stressor-Based

A readily apparent disadvantage of reliability-based prognostics is that it does not consider the
operating condition of the component. However, components operating under harsh conditions would
be expected to fail sooner and components operating under mild conditions to last longer. Type Il
methods account for environmental stresses and usage conditions (e.g. temperature, load, vibration,
etc.) when estimating the system RUL. These models estimate the lifetime of an average component
operating under the given usage conditions. The PEP toolbox includes three common Type Il algorithms:
Markov Chain models, Shock models, and Proportional Hazards models. Due to the stochastic nature of
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these algorithms, each results in a distribution of failure times. The RUL estimate here is estimated for a
given reliability confidence level. A confidence level of 0.5 may be chosen to obtain the average RUL for
non-safety critical components. For safety-critical or high value systems, a conservative reliability

confidence level of 0.95 may be more appropriate.

3.3 Type III: Degradation-Based

The final class of algorithms considers the way in which a specific component responds to its
specific usage. It is most commonly constructed through the identification or development of a
degradation parameter, which is trended towards failure. The PEP toolbox utilizes a general path model
for Type lll estimates. It also includes functionality to include prior information in the regression
parameters of a new component or system via Bayesian updating techniques. This methodology is used
in the current research and is described in great detail in Chapter 0. If a Type Ill model is applicable to a
given system, identification of an appropriate prognostic parameter is paramount to model
performance. An automated methodology for identifying prognostic parameters from multiple data
sources is the focus of this dissertation. By formalizing the suitability of a prognostic parameter,
identification of an appropriate parameter becomes a straightforward optimization problem; the
methodology outlined in this research utilizes Genetic Algorithm optimization to find an optimal or near-
optimal parameter. The parameter suitability metrics and identification methodology is fully included in
the PEP toolbox and can make use of many available data sources, including the sensed measurements
from the system, monitoring system residuals and fault detection results obtained from the PEM

toolbox.

3.4 Life Cycle Prognostics

As a system moves through life, different prognostic model types may be appropriate, as shown
in Figure 14. The PEP toolbox allows a prognostic system to transition between the three prognostics
types as more information about the system and its use becomes available. For a newly fabricated
component or system, the only possible estimate of RUL is reliability based, because no information is
available about how the unit will be used and no data is available from its use. For instance, a new car
tire is said to last 40,000 miles based on data collected from similar tires operating in “normal”
conditions. However, during operation planning and early life, specific information about the future use
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of the unit should be available. At this point, Type Il methods can be used to make RUL estimates.
Because these estimates consider the specific use of the unit, they should provide more accurate and
precise RUL predictions. If it is known that the tire will operating on primarily unpaved roads, the failure
time distribution will shift down to account for the harsher usage condition. Finally, as the unit is used
and data becomes available from its use and degradation, Type lll prognostics may be applicable to
obtain an even more accurate estimate of RUL. If performance characteristics such as tread-depth or
pressure can be measured on the tire, an individual-based estimate of the RUL can be made for that
specific tire. Because the PEP toolbox includes functionality to develop all three types of prognostic
models, transitioning between the RUL estimation methods is more readily performed as the operator
sees fit. A key area of future work is developing a method to seamlessly shift between the three
prognostic types as is appropriate, considering the RUL information of two types of models during the

transition period.

The PEP toolbox is a set of MATLAB-based tools designed as a unified platform for developing
data-based prognostic models. It is designed to couple with the PEM toolbox to allow for a full
monitoring, fault detection, and prognostic system. The toolbox facilitates and automates prognostic
model development by implementing the three prognostic types and additional methods to ease the
developmental burden on the prognostic system developer. ldentification of an appropriate prognostic

parameter is key for the application of Type lll prognostic models. Development of an automated
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parameter identification method is the focus of this dissertation. The following section outlines the
development of the parameter suitability metrics and the identification methodology. This is followed

by example applications of the parameter optimization method and RUL estimation.
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4 Methodology

The problem of accurately and precisely predicting remaining useful life is very complicated; as
such many methodologies and algorithms have been proposed to address this problem, which were
discussed previously. This work focuses on Type lll, or condition-based prognostics. Extrapolation of a
general path model (GPM) to some pre-defined failure threshold is the most common Type Il method.
The GPM algorithm employed is a formulation of the model originally proposed by Lu and Meeker [1].
This method is described in detail in the following sections, including a Bayesian updating methodology
for incorporating prior information into the GPM fit. This is followed by a discussion of the features
necessary in an appropriate prognostic parameter for trending. Finally some discussion of automated

methods for identifying the optimal parameter is given.

4.1 The General Path Model

The General Path Model (GPM), also called degradation modeling, was first proposed by Lu and
Meeker [4] to move reliability analysis methods from failure-time analysis to failure-process analysis.
Traditional methods of reliability estimation use failure times recorded during normal use or accelerated
testing to estimate a time of failure (TOF) distribution for a population of identical components. In
contrast, GPM uses degradation measures to estimate the TOF distribution. The use of historical
degradation measures allows for the direct inclusion of censored data, which gives additional

information on unit-wise variations in a population.

GPM analysis begins with some assumption of an underlying functional form of the degradation

path for a specific fault mode. The degradation of the ith unit at time tj is given by:
yij = n(tj’¢,6,) + 8ij

where ¢ is a vector of fixed (population) effects, 6i is a vector of random (individual) effects for the ith
component, and €ij ~ N(0,02¢) is the standard measurement error term. Application of the GPM
methodology involves several assumptions. First, the degradation data must be describable by a
function, n; this function may be derived from physics-of-failure models or from the degradation data

itself. In order to fit this model, the second assumption is that historical degradation data from a
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population of identical components or systems is available. This data should be collected under similar
use (or accelerated test) conditions and should reasonably span the range of individual variations
between components. Because GPM uses degradation measures instead of failure times, it is also not
necessary that all historical units are run to failure; censored data contains information useful to GPM
forecasting. The final assumption of the GPM model is that there exists some defined critical level of
degradation, D, beyond which a component no longer meets its design specifications, i.e. the
component has failed. Therefore, some components should be run to failure in order to quantify this
degradation level. Alternatively, engineering judgment may be used if the nature of the degradation

parameter is explicitly known.

Several methods are available to estimate the degradation model parameters, ¢ and 6. In some
cases, the population parameters may be known in advance, such as the initial level of degradation. If
the population parameters are unknown, estimation of the vector of population characteristics, ¢, is
trivial; by fitting the model to each exemplar degradation path, the fixed effects parameters can be
taken as the mean of the fitted values for each unit. The variance of these estimates should be
examined to ensure that the parameters are in fact population-wide parameters. If significant variability
is present, the parameters should be considered random and moved to the 8 vector. A two-stage
method of parameter estimation was proposed by Lu and Meeker [1] to estimate distribution

parameters for the random effects.

In the first stage, the degradation model is fit to each degradation path to obtain an estimate of
0 for that unit; these B's are referred to as stage-1 estimates. It is convenient to assume that the stage-1
estimates, or an appropriate transformation, ©=H(8), is normally (or multivariate normally) distributed
so that the random effects can be fully described using only a mean vector and variance-covariance
matrix without significant loss of information. If this assumption is not justifiable, the GPM

methodology can be extended in a natural way to allow for other random effects distributions.

In the second stage, the stage-1 estimates (or an appropriate transformation thereof) are
combined to estimate ¢, ug, and Zg. At this stage, if the variance of some previously assumed random
parameter is effectively zero, this parameter should be considered a fixed effects parameter and should

be removed from the random parameter distribution.
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In their seminal paper, Lu and Meeker [1] describe Monte Carlo methods for using the GPM
parameter estimates to estimate a time to failure distribution and corresponding confidence intervals.
Because the focus of this paper is estimating time to failure of an individual component, these methods

will not be described here.

Several limitations and areas of future work of the GPM have been identified by Meeker, et al.
[118]. Some of these areas have been addressed in work by other authors. First, Meeker, et al. cite the
need for more accurate physics of failure models. While such models are helpful for understanding
degradation models, they may not be necessary for RUL estimation. In fact, if exemplar data sets cover
the range of likely degradation paths, it may be adequate to fit a function which does not explain failure
modes but accurately models the underlying relationships. With this idea, neural networks have been

applied to GPM reliability analysis [5, 6, 123].

In addition, the GPM was originally developed for reliability analysis of only one fault mode. In
practical applications, the system of interest may consist of several components each with different fault
modes, or of one component with several possible, even simultaneous fault modes. These multiple
degradation paths may be uncorrelated, in which case extension of the GPM is trivial: reliability of a
component for all degradation modes is simply the product of the individual reliabilities, and RUL can be
considered some function of the RULs for each fault mode, such as the minimum. If, however, the
degradation measures are correlated, extension of the GPM is more complicated. For example, in the
case of tire monitoring, several degradation measures may contain information about tire reliability,
including wall thickness, tire pressure, and tire temperature. However, it is easy to see that these
measures may be correlated; a higher temperature would cause a higher pressure, etc. The case of
multiple, competing degradation modes is beyond the scope of the current work. A discussion of the

problem can be found in Wang and Coit [105].

4.2 GPM for Prognostics

The GPM reliability methodology has a natural extension to estimation of remaining useful life
of an individual component or system; the degradation path model, yi, can be extrapolated to the failure

threshold, D, to estimate the component's time of failure. This type of degradation extrapolation was
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proposed early on by Upadhyaya, et al. [5]. In that work, the authors used both neural networks and
nonlinear regression models to predict the RUL of a small induction motor. The prognostic methodology

used for the current research is described below.

First, exemplar degradation paths are used to fit the assumed model. The stage-1 parameter
estimates are used to evaluate the random-effects distributions, to determine the mean population
random effects, the mean time to failure (MTTF) and their associated standard deviations, and to
estimate the noise variance in the degradation paths. The MTTF distribution can be used to estimate

the time of failure for any component which has not yet been degraded.

As data is collected during use, the degradation model can be fit for the individual component.
This specific model can be used to project a time of failure for the component. Because of noise in the
degradation signal, the projected time of failure is not perfect. A prediction interval (Pl) about the

estimated parameters can be evaluated as:
O €01, o1+ 104 1, o1+ 1/n]

where t,.14; is the student's t-distribution, n is the number of observations used to fit the model, and s
is the standard deviation of the degradation model parameters. The standard deviation of the
parameters can be estimated through traditional linear regression techniques. The range of model

parameters can be used to project an Pl about the estimated time of failure.

The methodology described considers only the data collected on the current unit to fit the
degradation model. However, prior information is available from the historic degradation paths used
for initial model fitting, including the mean degradation path and associated distributions. This data can
provide valuable knowledge for fitting the degradation model of an individual component, particularly
when only a few data points have been collected or the collected data suffers from excessive noise.
Bayesian updating methods have been developed to incorporate this additional information in the fitted

model.
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4.3 Incorporating Prior Information with Bayesian Methods

The current research investigates using Bayesian methods to include prior information for linear
regression problems. However, as discussed above, the GPM methodology can be applied to nonlinear
regression problems as well as other parametric modeling techniques such as Neural Networks. Other
Bayesian methods could be applied to these types of models, but such application is beyond the scope
of the current research. For a complete discussion of Bayesian statistics including other Bayesian update
methods, the interested reader is referred to [124-126]. In addition, work by Robinson and Crowder

[126] focuses on Bayesian methods for nonlinear regression GPM.

A linear regression model is given by:

Y=bX

The model parameters are estimated as:
Ty )\ v7s-
b=(X"2X) X'5Y

where 2, is the variance-covariance noise matrix for the response observations. It is important to note
that the linear regression model is not necessarily a linear model. The data matrix X can be populated
with any function of degradation measures, including higher order terms, interaction terms, and
functions such as sin(x) or e*. If prior information is available for a specific model parameter, i.e.
6,-”N(6,~0,023), then the matrix X should be appended with an additional row with value one at the jth
position and zero elsewhere, and the Y matrix should be appended with the a priori value of the jth

parameter.

X' =[X; 0 - 010 - 0]
Y =[Y; B;]

Finally, the variance-covariance matrix is augmented with a final row and column of zeros, with the

variance of the a priori information in the diagonal element.
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If knowledge is available about multiple regression parameters, the matrices should be appended

multiple times with one additional row for each parameter.

It is convenient to assume that the noise in the degradation measurements is constant and
uncorrelated. Some a priori knowledge of the noise variance is available from the exemplar degradation
paths. If this assumption is not valid for a particular problem, then other methods of estimating the
noise variance must be used. The assumption of uncorrelated noise allows the variance-covariance
matrix to be a diagonal matrix consisting of noise variance estimates and a priori knowledge variance
estimates. If this assumption is not valid, including covariance terms is trivial; again these terms can be

estimated from historical degradation paths.

After a priori knowledge is used to obtain a posterior estimate of degradation parameters, this
estimate becomes the new prior distribution for the next estimation of degradation parameters. The

variance of this new knowledge is estimated as:

1 n 1
= — 4 —
2 2 2
Opuslﬂ i O'y O-priorﬂ i

where n is the number of observations used to fit the current model.
4.4 Choosing a Prognostic Parameter

Identification of an appropriate prognostic parameter is key for applying a GPM prognostic
model to a system. An ideal prognostic parameter has three key qualities: monotonicity, prognosability,
and trendability [128]. Monotonicity characterizes the underlying positive or negative trend of the
parameter. This is an important feature of a prognostic parameter because it is generally assumed that
systems do not undergo self-healing, which would be indicated by a non-monotonic parameter.

However, this assumption is not valid for some components such as batteries, which may experience
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some degree of self-repair during short periods of nonuse. The monotonic trend is considered valid
when considering an entire system, even if individual components or sub-systems may experience some
self-repair. Prognosability gives a measure of the variance in the critical failure value of a population of
systems. Ideally, failure should occur at a crisp, well-defined degradation level. A wide spread in critical
failure values can make it difficult to accurately extrapolate a prognostic parameter to failure. Finally,
trendability indicates the degree to which the parameters of a population of systems have the same
underlying shape and can be described by the same functional form. These three intuitive metrics can
be formalized to give a quantitative measure of prognostic parameter suitableness. Ideally, these
metrics would each range from zero to one, one indicating a very high score on that metric and zero
indicating that the parameter is not suitable according to the particular metric. Figures 15 and 16 give
two populations of prognostic parameters; the parameter shown in Figure 15 is considered useful for
prognostics, while the parameter in Figure 16 is not. These two populations will be used to illustrate the

three suitability metrics as they are discussed.
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Figure 15: Population of "Good" Prognostic Parameters
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Figure 16: Population of "Bad" Prognostic Parameters

Monotonicity is a straightforward measure given by:

Monotonicity = mean

‘#pos%x _ #neg%x‘

n-1 n-1 ‘
where n is the number of observations in a particular history. The monotonicity of a population of
parameters is given by the average difference of the fraction of positive and negative derivatives for
each path. When using data collected or inferred from actual systems, it is important to adequately
smooth the data to give more accurate estimates of the derivatives. Numerical calculation of a function
derivative should rarely be left to a simple difference function; the addition of noise makes this method
inaccurate and impractical. In practice, fitting a line to a small portion of the data, perhaps five or ten
observations, and taking the derivative to be the slope of that line will give a more realistic measure of
the slope. When this method is employed, the above equation for monotonicity need only be adjusted

for the number of calculated derivatives. Instead of n-1 derivatives, n-m derivatives may be calculated,
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where m is the number of data points used to calculate one derivative. The population of good
parameters shown in Figure 15 is clearly monotonically increasing, in the absence of noise; the
monotonicity metric for this parameter is 0.940. Conversely, the bad parameter shown in Figure 16 has
monotonicity of 0.501. It is important to note that the current formulation of monotonicity does not
consider if the entire population is monotonic in the same direction, only that each individual exhibits an
either generally increasing or decreasing trend. This is an undesirable feature in the prognostic
parameter; however, it is considered in characterizing the prognosability which looks at how well
clustered failure values are. If failure values for the entire population are well clustered and the
individual parameters are monotonic, then the population must have either an increasing or decreasing

monotonicity.

Prognosability is calculated as the deviation of the final failure values for each path divided by

the mean range of the path. This is exponentially weighted to give the desired zero to one scale:

std( failurevalues)

Prognosability = exp| -
8 v P mean(| failurevalue — startingvalueD

This measure encourages well-clustered failure values, i.e. small standard deviation of failure values,
and large parameter ranges. This gives the model a long range to predict a very precise value, which can
be related to the notice period discussed previously. The failure values for the good prognostic
parameter are very well clustered, following a wide range; the prognosability is 0.930. The failure values
of the population of bad prognostic parameters cover a wide range of values; this parameter has

prognosability of only 0.346.

Characterizing the trendability of a population of parameters poses significant difficulty
compared to the other two metrics. A candidate parameter is trendable if the same underlying
functional form can model each parameter in the population. Initially, trendability was characterized by
comparing the fraction of positive first and second derivatives in each parameter. However, this naive
approach was highly susceptible to noise and did not provide a clear distinction between trendable and
not-trendable parameters. An improved method for characterizing trendability is used in which
prognostic parameters are re-sampled with respect to the fraction of total lifetime. This results in each
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prognostic parameter containing exactly 100 observations, with each observation corresponding to 1%
of lifetime. The linear correlation is calculated across the population of prognostic parameters, and the

trendability is given by the smallest absolute correlation:
Trendability = min(‘corrcoefﬁ‘)

Figure 17 gives a comparison of a population of prognostic parameters as a function of cycles and as a
function of the percent of life. It is visually obvious in Figure 17(a) that the parameters of this
population can be described by the same underlying function. By transforming to the percent lifetime
space in Figure 17(b), it is straightforward for a computer to recognize this relationship as well. The
“good” population shown in Figure 15 has trendability of 0.984, while the population of “bad”
parameters shown in Figure 16 has trendability of 0.288. The three suitability metrics for both

populations are summarized in Table 1.

The effect of noise on the parameter suitability metrics is of particular import. Specifically, bad
parameters which are noisy should still be identified as bad. It is slightly trickier for good parameters.
Some noise contamination can be tolerated by the GPM methodology, but significant levels of noise will
appreciably reduce model performance. Three sets of good and bad parameters are tested; each of the

six parameters is plotted in Appendix A. The first set is completely noise free; the second set is
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Figure 17: Prognostic Parameter vs (a) Time in Cycles and (b) Time in % of Full Lifetime
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Table 1: Example Prognostic Parameter Suitability Metrics

Monotonicity | Prognosability | Trendability

Good Parameter (Figure 15) 0.940 0.930 0.984

Bad Parameter (Figure 16) 0.510 0.346 0.288

contaminated with Gaussian noise at a level of 20% of the mean parameter value; the third set is
contaminated with Gaussian noise at 80% of the mean parameter value. The suitability metrics for each
of these parameters are given in Table 2. As the table shows, the parameter suitability metrics for a
“good” prognostic parameter are only slightly degraded at a noise level of 20%. The suitability metrics
for the very noisy parameter, however, are significantly degraded, indicating that this parameter would
result in degraded model performance. The three “good” parameters are used in the following chapter
to investigate the effect of noise on model performance. The suitability metrics for the “bad” parameter
are not significantly changed by the addition of noise. This is a useful result indicating that even the

noise-free bad parameter is poorly suited to prognostics.

Several methods are available for identifying candidate prognostic parameters, including visual
inspection of sensed data and model residuals, Principal Component Analysis, traditional optimization
method, and Genetic Algorithms approaches. Traditionally, parameter identification is done through
visual inspection and engineering judgment. While visual inspection can lead to the identification of
useful prognostic parameters, it can be tedious and time consuming when parameters are needed for
several components or fault modes, and the optimal parameter may be overlooked in favor of a suitable
one. Automated methods for identifying prognostic parameters are possible with a formalized set of
metrics to characterize their suitability. By defining a fitness function as a weighted sum of the three

metrics:

fitness = w, monotonicity + w, prognosability + w,trendability

a set of prognostic parameters can be compared to determine the most suitable one. Here, the

constants wy,, w, and w; control how important each metric is in the optimization. For most
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Table 2: Effect of Noise on Parameter Suitability Metrics

Monotonicity | Prognosability | Trendability

Good Parameter

Noise Free 1.000 0.937 1.000
20% Noise 0.955 0.913 0.986
80% Noise 0.715 0.761 0.713

Bad Parameter

Noise Free 0.439 0.344 0.228
20% Noise 0.409 0.340 0.192
80% Noise 0.441 0.343 0.153

applications, these constants can each be identically one to give equal weight to each parameter
feature. However, as discussed previously, monotonicity may not be an appropriate prognostic
parameter feature for some applications, such as for battery health monitoring. In that case,
monotonicity may be excluded from the parameter fitness calculation by giving it a weight of zero. In
addition to optimizing for the best combination of parameter suitability metrics, the prognostic
parameter can also be optimized for other features perhaps not directly related to parameter
performance. For instance, minimizing the weights of each of the inputs in a linear combination may be
of value because it reduces the complexity of the solution and forces unimportant weights to go to zero;

E weights
o

this can be achieved by adding an additional term to the fitness function, w , Where w,, is a

constant similar to wp, w,, and w;, and o is either the standard deviation or the range of the input.
Additionally, in order to reduce the uncertainty in the RUL prediction, it is beneficial for the first and
second derivatives to have the same sign, i.e. increasing functions are concave up and decreasing
functions are concave down. This can be included in the fitness function by simply adding a large
penalty for mismatch of first and second derivatives. Other such features may also be included as they
apply to the desired parameter optimization. The fitness function is used with optimization techniques
such as gradient descent, genetic algorithms, and machine learning methods to identify useful

prognostic parameters.
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4.5 Prognostic Parameter Optimization

After developing an appropriate fitness function, defined by the suitability metrics given above
and other desirable features, any number of well-established optimization methods may be applied to
identify the optimal prognostic parameter. Optimization methods can be broken into two major groups:
deterministic methods and stochastic methods. Deterministic methods include gradient descent,
Newton method, quasi-Newton method, Nelder-Mead, and brute-force search [129]. These methods
suffer from high computational cost and sensitivity to local optima. Gradient descent methods attempt
to traverse the fitness landscape to identify the optimal solution, but are easily fooled by local optima.
Newton’s method uses the second order Taylor expansion to find the roots of the derivative of the
fitness function, although this method breaks down for derivatives which are not locally well
approximated by a quadratic function. The Quasi-Newton method uses a mixed quadratic and cubic line
search procedure and the Broyden—Fletcher—Goldfarb—Shanno (BFGS) formula for updating the
approximation of the Hessian matrix. Nelder-Mead is a direct-search method that uses only function
values, that is, it does not require computation of derivatives; this method works well for non-smooth
objective functions. These methods are further complicated by multiple optimization parameters. For
complicated fitness functions, these methods are likely to settle in a local optimal solution instead of the
global optimum. Brute force methods attempt to identify every possible solution to a given
optimization problem and compare the performance of all solutions to identify the optimal one. Brute
force methods are obviously computationally intensive, and are well suited to optimizing parameters

with discrete values. They are not readily applicable to large, continuous optimization spaces.

Stochastic methods include genetic algorithms, particle swarm, stochastic gradient descent, and
simulated annealing [130]. These methods are more robust to local optima because they search the
entire solution space stochastically instead of moving along a given path. Given enough time, stochastic
methods are guaranteed to find the global optimal solution; given a set amount of time, they are able to
find near-optimal solutions [129]. Stochastic methods are often coupled with a traditional gradient
descent to refine the results of the optimization. Because stochastic methods are more robust to local
optima and handle multiple optimization parameters well, this research will focus on these methods for

parameter selection. The most common stochastic optimization method is genetic algorithms (GA),
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which is described in some detail in the next section. Additional multi-objective stochastic optimization
methods include normal boundary intersection method, normal constraint method, and successive
pareto optimization method, but GA optimization is the method of choice for the current research. A

brief overview of GA optimization is given next.

4.5.1 Genetic Algorithms

Classical optimization attempts to minimize the cost function by starting at an initial set of
parameter values and utilizing function and derivative information to hone in on a minimum value. This
type of optimization can quickly breakdown if the initial values are close to a local minimum; classical
optimization will assume the first minimum it finds is the global minimum which is not necessarily true.
Genetic algorithm (GA) optimization works differently by testing a random population of initial
parameter values and mimicking the processes of evolution to optimize these values, as outlined in
Figure 18. Because of the pseudo-random nature of the parameter populations evaluated, GA
optimization is sometimes able to ignore local minima in search of a global minimum. Each of the steps
in genetic algorithm optimization is quickly discussed below. A full discussion of continuous genetic

algorithms is available in Haupt [129].

Generate initial population
v
—»| Find cost for each chromosome
v
select mates
v
Mating Genetic
v Operatots
Mutation
v
End of GA check

done

Figure 18: Flowchart of Genetic Algorithm Optimization
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4.5.1.1 Initial Population and Cost

The goal of genetic algorithms is to search for an optimal solution of a given problem. This
process begins by defining a "chromosome" to be a vector of variable values, a possible solution to the
optimization. If a particular optimization problem has Nvar variables, then a possible chromosome for

that optimization is

chromosome = [ Di>Ds> P3,~-~,PNW]

where p; is a continuous-valued variable. These pi variables are called "genes." A "population" is the set
of all chromosomes in one generation. Each chromosome has an associated fitness value found by

evaluating the fitness function for the gene values in that chromosome.

Fitness functions are mathematical functions used to assign a value to a set of variables
(chromosome).  Fitness functions characterize the values and parameters to be optimized.
Development of appropriate fitness functions is critical for genetic algorithm optimization: "The success
of the GA on a particular function is certainly related to how the function is 'encoded' [132]. Overly
complex fitness functions can slow GA performance; overly simplified functions may not adequately

describe the fitness surface.

After the fitness function has been evaluated for each parameter (or set of parameters), the
initial population is ordered in terms of its performance. The genetic algorithm then uses three genetic

operators to generate a new, hopefully fitter generation of solution chromosomes.

4.5.1.2 Genetic Operators

Three evolutionary modes exist for generating a subsequent generation: reproduction,

crossover, and mutation.

Reproduction, or selection, results in an exact copy of the best performing chromosomes into
the new population. This echoes Darwin's theory of Survival of the Fittest. Because of this mode, it is
always guaranteed that the best fitness function cost will either improve or at least remain constant

between successive generations; the best cost across generations will never worsen. In creating a new
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generation, a set number of chromosomes are produced via reproduction: the number of elite

individuals.

Crossover, or mating, is the creation of offspring chromosomes from two parent chromosomes
retained from the previous generation. This method is used to generate a specified fraction of the
chromosomes in the new generation, the crossover fraction. Several methods have been developed to
perform this crossover. The GA crossover of this research utilizes a "scattered" crossover function.
Scattered crossover creates a random binary vector of length Nvar, called the mask. A child is generated
by accepting the genes of the first parent when the mask vector is valued 1. Genes of the second parent

are selected when the mask vector is values 0O:

parent, [p1 sP2sP35-s Py ]

parent, [ql 22935+, ]
mask [0,LL,...,0]

offspring [ql sP2sP3se-ly, ]

The final model of new chromosome generation is mutation, which has obvious connections to
evolutionary biology. In each generation, random mutations alter a set percent of the variables in the
list of chromosomes, the mutation rate. Mutations prevent overly fast convergence and facilitate
exploration of other areas of the fitness surface. In general, a gene is randomly to be mutated. This
gene can either be replaced by a new, random value or a random value can be added to the gene. For
the research presented here, mutation is based on a Gaussian distribution. This distribution uses
random numbers taken from a Gaussian distribution centered on zero. These random numbers are

added to the genes chosen for mutation.

Through these three methods, a new generation is created which is then evaluated for fitness.
This cycle is repeated until one of several stopping criteria is met: a set number of generations is
reached, a minimum average change between generations is not met, or the optimal value of the fitness

function is obtained.

Like other optimization methods, GA has several advantages and disadvantages. One obvious

advantage is the use of a fitness function to determine which parameter values to keep; classical
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optimization follows gradient curves and can get stuck in a local minimum. Because of the threat of
local minimum, the initial parameter values in classical optimization must be close to the optimal values.
GA optimization does not have this problem of initial values because of the inherent randomness in
generation construction. As mentioned above, this randomness may allow GA to ignore local minima in
search of the global minimum. If given enough time, GA will find the optimal, or near optimal solution
to most problems. However, the disadvantage is that this can be computationally more intensive than a
classical approach. Another disadvantage lies in identifying an appropriate fitness function for the
problem. For model optimization, the mean squared error of the model is an apparent and appropriate
fitness function. In some situations, however, additional parameters are needed to produce an optimal
and appropriate solution. In these cases, multi-objective optimization (MOO) is used to produce a

solution which is acceptable for several criteria.

4.5.1.3 Multi-Objective Optimization

In some applications, model optimization has several, sometimes competing objectives. In this
case, a solution must be identified which satisfies some or all of these objectives to a greater or lesser
degree. Bentley and Wakefield [133] identify six methods for combining multiple objectives in one
fitness function. This research will implement the sum of weighted objectives (SWO) method. This is
the simplest and, therefore, most common method. To create a SWO fitness function, each objective is
given a weight to specify its relative importance; the multiple objectives are then summed to produce a

fitness function:

fitness = E w, f;

where f; is the fitness function for the i objective. The SWO method forces the GA to converge to a
compromise solution and results in a best compromise solution based on the weights of each objective.
It should be noted that in practice determining appropriate weight values for each objective can be very

difficult.

4.5.2 Prognostic Parameter Input Selection
The computation time necessary to execute a GA optimization increases exponentially with the

number of parameters being optimized [134]. Many data sources are available as inputs to a prognostic
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parameter, including sensor readings, monitoring system residuals, fault detection and diagnostic
results, and operating condition indicators. In order to alleviate the computational burden, possible
prognostic parameter inputs can be pre-screened to determine if they are expected to contribute to the
overall prognostic parameter suitability. In fact, removing unnecessary inputs may improve the
optimization results. While the optimization should give these inputs weights of zero, this rarely
happens before the optimization is terminated. When optimizing a weighted sum of possible inputs, it is
straightforward to determine which inputs will improve the prognostic parameter and which will be
detrimental. The proposed input selection method involves simply evaluating the fitness function for
each candidate input and rejecting any inputs with fitness below a specified threshold. When using the
simple sum of the three suitability metrics as a fitness function, a threshold of 1.0 — 1.5 is generally

appropriate for identifying useful inputs.

4.6 Combined Monitoring and Prognostic Systems

Figure 19 gives a combined monitoring, fault detection, and prognostics system similar to the
one used in this research. The main difference between the system shown here and that shown in
Figure 19 is the absence of the fault diagnostic module. The research presented in this dissertation does
not consider different fault modes when making prognostic estimations; however, it would be trivial to
use diagnostic information to inform the prognostic model. If fault diagnostics are available, then
multiple prognostic models should be developed, one for each fault mode of interest. The monitoring
system employs an Auto-Associative Kernel Regression (AAKR) model for monitoring and the Sequential
Probability Ratio Test (SPRT) for fault detection. Both of these methods are described in broad detail

below. The interested reader is referred to [106] for a more complete discussion of AAKR and [47] for

SPRT.
Prognostic
Monitoring Fault Parameter Prognostic
module Residuals Detection Generation  Model
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Figure 19: Combined Monitoring and Prognostic System
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Auto-Associative models can generally be considered an error correction technique. These
models compare a new observation to those seen in the past to estimate how the system “should” be
running. These corrected predictions can be compared to the measured data to identify faulted
operation. Several auto-associative architectures are available, including auto-associative neural
networks, auto-associative kernel regression (AAKR), and multivariate state estimation technique [106].

This research employs the AAKR algorithm for system monitoring.

Auto-associative kernel regression (AAKR) is a non-parametric, empirical technique. Exemplar
historical observations of system operation are stored in a data matrix. As a new observation is
collected, it is compared to each of the exemplar observations to determine how similar the new
observation is to each of the exemplars. This similarity is quantified by evaluating the distance between

the new observation and the exemplar. Most commonly, the Euclidean distance is used:

where di is the distance between the new observation, X, and the ith exemplar, xi. The distance is

converted to a similarity measure through the use of a kernel. Many kernels are available; this research

d2
s, = exp(— h—’z)

where s; is the similarity of the new observation to the i exemplar. Finally, the “corrected” observation

uses the Gaussian kernel:

value is calculated as a weighted average of the exemplar observations:

5 Esixl.

Monitoring system residuals are then generated as the difference between the actual
observation and the estimated, corrected observation. These residuals are used with a SPRT to

determine if the system is operating in a faulted or nominal condition. As the name suggests, the SPRT
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looks at a sequence of residuals to determine if the time series of data is more likely from a nominal
distribution or a pre-specified faulted distribution. As new observations are made, the SPRT compares

the cumulative sum of the log-likelihood ratio:
s, =s_,+logA,

to two thresholds, which depend on the acceptable Type | and Type Il fault rates:

a= log(i)

1-a

b= log(ﬂ)

o

where a is the acceptable false alarm (false positive) rate and f3 is the acceptable missed alarm (false
negative) rate. For this research, false alarm and missed alarm rates of 1% and 10% respectively are
used. If s; < a, then the null hypothesis is accepted; that is, the system is operating in a nominal
condition. If s; > b, then the alternative hypothesis is accepted; that is, the system is operating in a

faulted condition. When a determination is made, the sum, s;, is reset to zero and the test is restarted.

After a fault is detected in the system, the prognostic system can be engaged to determine the
RUL for the system. As discussed, GPM prognostic methods use a measure of system degradation to
estimate RUL. Monitoring system residuals, or combinations of residuals, are natural candidates for
these prognostic parameters because they inherently give a measure of the deviation of a system from
normal operation. The following chapter investigates the application of this combined
monitoring/prognostic system and the previously developed prognostic parameter identification

method to example data sets.
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5 Applications and Results

This section presents the results of applying the described prognostic parameter identification
methodology and the GPM/Bayes prognostic model to three data sets. First, the effect of noise in the
prognostic parameter on GPM/Bayes model performance is investigated with simulated prognostic
parameters. The second example application uses the data set given in the 2008 PHM Challenge
Problem, which resulted from a turbofan engine simulator. Additional data from the same simulator,
which is available at the NASA Prognostics Data Repository [135], was also used in this application. The
second example investigates the milling equipment degradation data set, also obtained from the NASA

repository [136].

5.1 The Effect of Noise on Model Performance

Prognostic models using the “good” prognostic parameters discussed in section 4.4 and plotted
in Appendix A were developed to investigate the effect of noise on prognostic model performance. As
shown in Table 2, the introduction of noise in the prognostic parameter can have a significant effect on
parameter suitability metrics. It is shown here that the noisier parameters are useful for prognostics,

but show degraded results over the less noisy parameters.

This application of the GPM/Bayes methodology investigated the three populations of “good”
parameters given in Appendix A. The first population is noise free; the second is contaminated with
Gaussian noise with zero mean and standard deviation equal to 20% of the mean parameter value; and
the third set is contaminated with 80% mean value noise. Twenty example parameters are available for
each population. For each parameter, a GPM/Bayes model is developed using the remaining 19 paths.
This model is used to determine the RUL at 100 equally spaced intervals along the exemplar path; each
observation is 1% of the total lifetime. Figure 20 gives the resulting RUL estimates for run 6. The results
for each run are plotted in Appendix A. RUL estimates for each case begin at roughly 150 cycles. This is
the average lifetime which is predicted by the Bayesian prior distributions. As more observations are
collected, the regression coefficients shift from being highly dependent on the prior distributions to
depending on the collected data from the actual system. As this happens, the RUL estimates become
more appropriate for the specific system being modeled. As indicated in Figure 20 and the figures in
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Appendix A, the number of observations needed to shift the model from the population-based prior
information to the system-specific observations depends on the noise in the prognostic parameter. The
noise-free parameter responds quickly to the collected data while the noisy parameters take longer to
reach the correct solution. In addition, the three parameters tend to converge near the end of life. At
this point, the regression model has learned the underlying functional form of the prognostic parameter

and noise is less of an issue.

These results also highlight the effect of threshold values on RUL bias. For cases with a failure
value that is less than the model threshold, the RUL is consistently overestimated, as in run 6. Cases
with failure values greater than the model threshold, such as run 2, result in underestimated RUL. This
highlights the need for a more sophisticated thresholding technique. The application of a single, static
threshold to all runs will often result in a biased RUL estimation. Several solutions to this problem have
been proposed, including the use of probabilistic thresholds as opposed to deterministic thresholds

[137, 138]. However, a more accurate method may be to account for system-specific features when
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Figure 20: RUL Estimates Using Noisy Parameters
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determining the failure threshold. A system-specific failure threshold may be informed by usage
conditions or features of the data. Methods which do not apply the same threshold, deterministic or
stochastic, have been suggested [61, 139]. Integration of a system-specific threshold with the
GPM/Bayes model described here will afford more accurate RUL prediction for systems without a clearly

defined failure threshold.

The next example application looks at the full monitoring/prognostic system to make RUL
estimates. By monitoring the system measurements, degradation is characterized by monitoring system
residuals. The proposed parameter identification method is applied to these residuals to identify an
appropriate prognostic parameter and the GPM/Bayes model is applied to several identified parameters

for prognostics.

5.2 PHM Challenge Data Description

The PHM Challenge data set consists of 218 cases of multivariate data that track from nominal

operation through fault onset to system failure. Data were provided which modeled the damage

propagation of aircraft gas turbine engines using the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS). This engine simulator allows faults to be injected in any of the five rotating
components and gives output responses for 58 sensed engine variables. The PHM Challenge data set
included 21 of these 58 output variables as well as three operating condition indicators. Each simulated
engine was given some initial level of wear which would be considered within normal limits, and faults
were initiated at some random time during the simulation. Fault propagation was assumed to evolve in
an exponential way based on common fault propagation models and the results seen in practice. Engine
health was determined as the minimum health margin of the rotating equipment, where the health
margin was a function of efficiency and flow for that particular component; when this health indicator
reached zero, the simulated engine was considered failed. The interested reader is referred to [118] for

a more complete description of the data simulation.

The data have three operational variables — altitude, Mach number, and TRA — and 21 sensor
measurements. Initial data analysis resulted in the identification of six distinct operational settings;

based on this result, the operating condition indicators were collapsed into one indicator which fully
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defined in which of the six modes the engine was operating. In addition, ten sensed variables were
identified whose residuals changed in a meaningful way through time and were well correlated to each
other. In this way, the 24 sensor data set was reduced to 11 variables, with original variable numbers: 1
(the operating condition indicator), 5, 6, 7, 12, 14, 17, 18, 20, 23, and 24. Because the nature of the
prognostics challenge was to develop a prognostic algorithm with no knowledge of the system under
test or the variables available, no effort is made to physically relate these eleven sensors. However,
they are considered suitable for auto-associative modeling due to the strong inter-correlations within

the group. The correlations between these eleven variables are shown in Figure 21.

The GPM method uses degradation information, either directly measured or inferred, to
estimate the system RUL. Initial analysis of the raw data does not reveal any trendable degradation
parameter. That is, no sensed measurement has an identifiable trend toward failure. Figure 22 is a plot
of the eleven variables that were determined to statistically change with time. These variables were

used to develop a monitoring and prognostics system.
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Figure 22: Eleven PHM Data Set Variables

The eleven variables are monitored with an auto associative kernel regression (AAKR) model.
The residuals between the measured values and the AAKR "corrected" values are candidates for
inclusion in the prognostic parameter. Two of these residuals are shown below in Figure 23. The
residual shown on the left is expected to be useful for prognostic predictions, while the residual shown
on the right is not expected to be useful because the population of residuals do not all have similar
shapes or equal failure values. It may be possible to classify these residuals into several groups of
similar residuals; this may be indicative of different failure modes, but this idea was not pursued for this
work. All eleven residuals are plotted in Appendix A, for reference. For this simple application, only
linear combinations of the residuals are considered for possible prognostic parameters. However, it is a
straightforward extension of the method to include other features, such as the measured data or fault
detection results, or to allow for higher order terms such as nonlinear combinations of several inputs,

exponential terms, etc.
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Figure 23: Residuals which are expected to be (a) useful and (b) un-useful for prognostics
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Three competing prognostic parameters are identified from the monitoring system residuals,
one identified through visual inspection and two identified using the proposed automated method.
Each of these parameters is used to develop a basic prognostic model and make RUL estimations for the
test cases. The following section presents the results of prognostic parameter identification and RUL

estimation for both of the methods.

5.2.1 Results

Three competing prognostic parameters are identified. The first parameter is based on visual
inspection and expert analysis. The second parameter is identified using the proposed automated
identification method. The third parameter is also identified via the automated method, but makes use
of the input selection method described to remove un-useful inputs and relieve the computational
burden. The three resulting prognostic parameters and their respective prognostic models are given
below. A GPM model with dynamic Bayesian updating is developed using each candidate parameter.
The prognostic models are then tested on the 218 test cases given in the PHM ‘08 challenge. Model

performance is characterized using the MAPE of the known RULs for the 218 test cases.

5.2.1.1 Visual Inspection

Visual inspection of the residuals suggests that an appropriate parameter might be a weighted
average of the residuals for variables 6, 7, 14, 18, and 20. All eleven model residuals are plotted in
Appendix A. The five residuals are weighted by the inverse of their average range and summed to give
the prognostic parameter identified through visual inspection. By scaling the residuals, the relative
importance of each contributor to the prognostic parameter is equal. Because no engineering judgment
can be made concerning the physical characteristics of the system, weighting each input equally is a
reasonable approach. The inputs can be scaled with respect to several measures, including the standard
deviation, the input range, the correlation to RUL, etc. By combining several similar residuals the spread

in the failure value is reduced, as show in Figure 24. This is sometimes referred to as parameter bagging
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and is a common variance reduction technique. Table 3 gives the parameter suitability metrics for each
of the residuals. The five residuals with total suitability (given by the sum of the three suitability
metrics) greater than 1.5 were combined to create the final parameter, which has greater suitability
metrics than any one constituent residual. ldentification of this parameter involved several weeks of

expert analysis of the available data.

A second order polynomial model can been used to model the degradation parameter. While
an exponential model may be more physically appropriate, and was certainly found to be after the data
simulation method was made public, the quadratic model is more robust to noise and better describes
the data fit for the chosen prognostic parameter. For the methodology proposed, the model must be
linear in parameters; however, simple exponential models, such as y=exp(ax+b) parameterized as In(y) =
ax +b, cannot be used with negative y-values, because the natural logarithm of a negative number is

undefined in the real number system. This adds unnecessary complexity to the modeling method.
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Figure 24: Prognostic Parameter Identified by Visual Inspection
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Table 3: Prognostic Parameter Suitability Metrics

Variable Monotonicity | Prognosability | Trendability | Suitability
3 0.435 0.370 0.000 0.805
5 0.537 0.613 0.018 1.168
6 0.604 0.727 0.291 1.622
7 0.749 0.818 0.726 2.293
12 0.654 0.314 0.001 0.968
14 0.782 0.851 0.814 2.447
17 0.639 0.282 0.000 0.921
18 0.703 0.731 0.649 2.083
20 0.625 0.737 0.476 1.838
23 0.447 0.497 0.000 0.945
24 0.457 0.510 0.000 0.967
VI Parameter 0.846 0.891 0.903 2.640

Quadratic equations, on the other hand, are naturally linear in parameters and can be used without
significant concern for the effects of noise on the model fit. Shifting the prognostic parameter to the
positive quadrant eliminates the problem of taking the logarithm of negative values; however, the
guadratic fit results in a lower fitting error than the exponential fit, with mean squared errors of 1.53
and 2.33 respectively. Because of its robustness to noise and reduced modeling error, the quadratic fit

is chosen for this research.

Figure 25 gives an example of a polynomial fit of the prognostic parameter with the time the
model crosses the critical failure threshold indicated. The threshold of -13.9 was chosen as the upper
95% level of the distribution of failure values for the known failed cases. This gives an estimated system
reliability of 95% which is a conservative estimate of failure time and reduces the possibility of
overestimating RUL and having a failure. The time between the last sample and that star is the estimate
of RUL, as indicated by the blue area. For this case, the estimated RUL is exactly correct, with an

estimated remaining life of 36 cycles.

This prognostic parameter was used to develop a GPM prognostic model with Bayesian
updating. The model was developed using the prognostic parameter resulting from 218 training cases

which ran from beginning of life to failure, and was tested with 218 test cases which ran from beginning
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Figure 25: Prognostic parameter trending and RUL estimation

of life to some point after a failure-inducing fault occurred but before actual failure. The result of each
of these cases is shown below, in Figure 26. The GPM model developed with this prognostic parameter
resulted in a MAPE of 22.8%. While this result is larger than would be accepted in practice, it is
important to note that in approximately half of the 218 test cases the RUL is predicted to within 10%

accuracy. The large MAPE is due to poor performance on a few cases, which skews the results.

To illustrate the utility of the Bayesian updating method, a GPM model with no updating was
also employed. The advantage of including prior information via dynamic Bayesian updating is to
improve RUL estimates when very few observations are available, the data are very noisy, or both. A
comparison of the performance through time of the straight GPM and the GPM with Bayesian updating

is given in Figure 27. In this experiment, the two methodologies were applied to each of the training
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Figure 26: Visual Inspection RUL Estimate Results

cases using only a fraction of the full lifetime. The models were applied to subsets of each lifetime in 5%
increments, i.e. the models were run using 5% of the full lifetime, 10%, 15%, etc. The RUL error at each
percentage was calculated across the 218 full training cases to determine how the error decreases as
more data become available. As was seen in the example case, the non-Bayesian method may result in
an undeterminable RUL. In fact, for the data used here, nearly half the runs resulted in an
indeterminate RUL estimate using the GPM methodology without Bayesian updating for runs using less
than half the total lifetime. For these cases, the RUL is estimated using a Type |, or traditional reliability-
based, method in order to give an estimate of RUL prediction error. The mean residual life is found at
each time using a Weibull fit of the failure times and the current lifetime. Mean Residual Life (MRL) is

found by:

MRL(t) = % }R(s)ds

68



where R(t) is the reliability function at time t. In practice, the prognostic method would likely fall back

to a more rudimentary method such as this if the Type Ill model did not produce a reasonable answer.

The GPM/Type | model which does not include prior information gives an average error of
approximately 55% when only 5% of the full lifetime is available and relies on the Type | method for
approximately half of the cases. Conversely, the GPM/Bayes method gives approximately 25% error and
is able to predict an RUL for every case. As Figure 27 shows, the average error of both methods
decreases as more data becomes available and eventually converges to approximately equal error

values when the available data overpowers the prior information.

5.2.1.2 GA Optimized Parameters

Two prognostic parameters were identified using the automated method described with a GA
optimization. The GA was used to optimize the weighting coefficients in a weighted sum of the eleven

monitoring system residuals. For this application, the fitness function was given by a straight sum of the
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Figure 27: GPM Results With and Without Bayesian Updating
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three suitability metrics:

fitness = monotonicity + prognosability + trendability

This gives equal weight to each of the three parameter suitability measures, but does not consider
anything else. While the visual inspection parameter involved several weeks of expert analysis, the GA
optimization involved only a few minutes of worker time to set up and approximately 1.68 hours of
unsupervised computer runtime. While the time needed for the GA optimization to run will scale with
the number of possible inputs, it involves mainly computer runtime and is only a fraction of the time
needed for parameter identification through expert opinion. A second GA optimization was run using
the input selection method described previously with a suitability cutoff of 1.5 for inclusion in the
genetic algorithm. This optimization considered only five inputs and ran in 0.93 hours, nearly half the
time the full optimization needed. The parameter identified by the first GA optimization is given in

Figure 29, and the second in Figure 29.

Table 4 gives a comparison of the weights for the parameter identified by visual inspection and
the two selected by the GA. The parameter suitability metrics for each parameter are given in Table 5;
the suitability of each parameter is calculated as the sum of the three suitability metrics, as it was
determined in the fitness function. The fitness of both of the GA-optimized parameters is basically
equivalent to that of the parameter identified via visual inspection. This may be further improved by
standard GA improvement techniques, such as coupling the result with a gradient descent optimization

or running the GA several times to find the best result.

These GA-optimized prognostic parameters were also used to develop GPM prognostic models.
Figure 30 gives the results for the prognostic model developed with the first parameter population.
Figure 31 gives the results for the second parameter. Overall model performance with all three
parameters is comparable, and it is nonsensical to claim one parameter as best based on the model
performance. However, this application has shown that the proposed automated parameter
identification method can identify prognostic parameters comparable to those identified by visual

inspection and expert analysis in a fraction of the time.
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The sample application presented here benefited from the extensive expert analysis needed to
identify a parameter through visual inspection, in that a subset of possible parameter inputs had already
been identified and parameter optimization was restricted to only consider the monitoring system
residuals. In applications with a larger domain of inputs, which could include the actual signals, the
monitoring system predictions, information on usage, environment, and load, and fault alarm and
diagnostic results, as well as higher order terms of any of these inputs, the input selection technique
applied in identifying the second GA parameter will be paramount to timely and accurate parameter
identification. It will greatly reduce GA runtime and help ensure that a near optimal parameter is

identified.

The prognostic parameters identified here were used to develop a Type Ill model for prognostic
estimation. However, this data set includes both sensed measurements and operating condition
measurements. Type | and Il models may also be applicable to this type of data. The following section
looks at several competing prognostic models of each type and compares their performance on this data

set to illustrate the efficacy of the individual-based algorithm.

Table 4: Residual Weightings

Residual
Parameter 1 3 4 5 10 12 15 16 18 21 22
VI 0.00 | 0.00 | 0.19 | 0.14 | 0.00 | 4.76 | 0.00 | 28.5 | 0.74 | 0.00 | 0.00
Parameter
GA -0.28 | 0.81 | 0.07 | 0.14 | 0.00 | 4.93 | 0.02 | 29.1 | 0.35 | 0.32 | 0.10
Parameter 1
GA 0.00 | 0.00 | 0.02 | 0.07 | 0.00 | 2.38 | 0.00 | 5.92 | 0.25 | 0.00 | 0.00
Parameter 2
Table 5: PHM Challenge Data Parameter Suitability Metrics
Parameter Monotonicity | Prognosability | Trendability | Suitability
VI Parameter 0.846 0.891 0.903 2.640
GA Parameter #1 0.941 0.895 0.931 2.766
GA Parameter #2 0.901 0.889 0.909 2.698
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Figure 30: RUL Estimates for First GA-optimized Parameter
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Figure 31: RUL Estimates for Second GA-optimized Parameter
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5.2.2 Performance Comparison of the Three Prognostic Types
Three competing prognostic models were developed, one of each prognostic model class, to
illustrate the performance improvements offered by including additional information sources. The three

models are compared based on the “score” given by the challenge scoring function:

d = RULestimated - RUL
score(d <0)=exp(-d/13)-1
score(d >0)=exp(d/10)-1

actual

The Type | prognostic model utilizes a Weibull distribution-based reliability analysis. Two Type Il models
were developed to estimate RUL based on the operating history. The first uses a simple regression
model considering the time spent in each operating condition; the second, a Markov Chain model as
described earlier. Finally, a GPM model using the GA-optimized prognostic parameter given in Figure 28

gives the Type Il estimates.

5.2.2.1 Type | Prognostics

Type | prognostics are traditional time-to-failure analysis methods, such as Weibull analysis. A
histogram of the failure times for the 218 training cases is given in Figure 32 along with the Weibull
probability density function. The maximum likelihood Weibull fit of this data gives parameter estimates
of 228.5 and 5.1 for the scale parameter and shape parameter, respectively. The scale parameter
indicates that 63.2% of the observed systems can be expected to fail by cycle 228.5. Since the shape
parameter is much greater than 1, failure is occurring due to wear-out degradation. For each new
system, the RUL is estimated using the MRL calculation previously discussed. Because the failure data
has a large variance, accurate RUL prediction is not possible. From the figure, one can see that the most
probably value is around 210 cycles; however, the values have a range that covers approximately two
hundred cycles. Using this Weibull fit and the MRL calculation to estimate the RUL for each of the 218

test cases resulted in a score of approximately 22,500.

5.2.2.2 Type Il Prognostics

Type Il methods use operational data, such as load, environment, input current, etc, to make

predictions of RUL. As discussed in section 5.1, the data can easily be divided into six operational
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Figure 32: Histogram of failure times and Weibull fit

conditions; the percentage of full lifetime spent in each condition is shown in Figure 33. This figure
shows that the variation in the percent of time spent in each condition is small (~10%) , but the variation
in failure times is much larger (~20%). Therefore, it is improbable that the variation in time spent in

each operational condition is the source for the variation of failure time.

Several methods can be used to estimate the RUL from this usage data. Simplest, perhaps, is a
regression using the total amount of time spent in each condition to predict RUL (the percent of time
spent in each condition may also be used). Regressions of this type have been performed using a simple
linear regression, inferential kernel regression, and neural networks. The results for all regressions have
been poor, with little improvement over Type | estimates. This is most likely because the amount of
time spent in any one operating condition is not well correlated to the total lifetime, as shown in Table

6. The cost function for an inferential kernel regression was approximately 20,600.
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In addition to simple regression approaches, a Markov Chain (MC) model was developed to
simulate possible future operating condition progressions. The transition probably matrix calculated
from the training cases is given in Table 7. These operating condition progressions are used to
determine a distribution of failure times for the system. However, as with the inferential regression, it
was difficult to map the simulated operating condition information to an RUL estimate or degradation
parameter to determine end of life for each simulated path. The results of the MC study were also poor,

with a score of approximately 19,200.

5.2.2.3 Type Ill Prognostics

A GPM/Bayes model as described in Chapter 4 was developed using the GA-optimized
prognostic parameter given in Figure 28. For the current problem, quadratic regression models were fit
to the full degradation parameter for each of the 218 training cases. The resulting prior distributions for
the parameter fits are given in Table 8. Very precise estimates of pl and p2 are available. More
variance is seen in p3, which is assumed to correspond to the random level of initial degradation and is
retained for that reason. The variance of the degradation parameter can be estimated from the training
examples by smoothing each example path and subtracting the smoothed path from the actual path.
This gives an estimate of the noise; the noise variance can be estimated directly as the variance of this
data set. For this problem, the noise variance in the degradation parameter is estimated to be 0.0588.

The cost for the test set is much improved over the previous two methods at approximately 2,500.

Table 7: Markov Chain Transition Probability Matrix

To
From 1 2 3 4 5 6
1 0.14 | 0.16 | 0.15 | 0.16 | 0.15 | 0.24
2 0.16 | 0.15 | 0.14 | 0.14 | 0.15 | 0.25
3 0.15 | 0.14 | 0.15 | 0.15 | 0.15 | 0.26
4 0.16 | 0.15 [ 0.15 | 0.15 | 0.15 | 0.24
5 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.26
6 0.15 | 0.14 | 0.15 | 0.15 | 0.15 | 0.26
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Table 8: Prior Distribution for Quadratic Parameters

Mean Std Dev
p: | -0.0001 | 4.30E-05
P, | 0.0075 | 0.0028
ps | -0.2057 0.370

The next example application utilizes a data set collected in a laboratory testing experiment.
This example will further investigate the efficacy of the parameter identification method and input

selection technique.

5.3 Milling Data Set

The second data set used for this method is the Milling Data set collected by Agogino and
Goebel, also available at the NASA Prognostic Data Repository [136]. This data set presents milling
machine wear measurements made in a laboratory experiment. Figure 34 shows the measured flank
wear for each of 15 runs; the original data set includes 16 runs, but Run 6 includes only one set of
measurements which do not indicate failure so it is excluded from this analysis. The experimental
conditions for each run are given in Table 9. For this application, failure was assumed to occur at flank
wear of 0.45 mm, as indicated. Failure times given in Table 9 are interpolated from the available flank
wear measurements, assuming that the degradation is linear between measurements. In real-world
applications, flank wear measurements would not be available. A prognostic parameter for this system
should be able to characterize the milling machine degradation from the available information sources:
operating condition indicators, including depth of cut, feed, and material; and available sensor
measurements, including AC spindle motor current, DC spindle motor current, table vibration, spindle

vibration, table acoustic emissions, and spindle acoustic emissions, or features of these measures.

Figure 35 shows the raw data for run 3. Because each of the sensors measure highly oscillatory
variables, this data is not well suited to the AAKR monitoring system described previously. However,
there are underlying trends in the data which can be used to monitor the system. Of particular interest

here are the mean and standard deviation of the signals. By monitoring these features of the measured
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Figure 34: Flank Wear Measurements
Table 9: Milling Data Experimental Conditions

Run Depth of Cut Feed Material Failure Time

1 1.5 0.5 cast iron 41.00
2 0.75 0.5 cast iron 61.80
3 0.75 0.25 cast iron 75.55
4 1.5 0.25 cast iron 36.78
5 1.5 0.5 steel 9.33
6 1.5 0.25 steel N/A
7 0.75 0.25 steel 18.67
8 0.75 0.5 steel 9.17
9 1.5 0.5 cast iron 32.67
10 1.5 0.25 cast iron 36.00
11 0.75 0.25 cast iron 76.80
12 0.75 0.5 cast iron 55.00
13 0.75 0.25 steel 20.91
14 0.75 0.5 steel 14.40
15 1.5 0.25 steel 11.91
16 1.5 0.5 steel 6.68
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variables, changes in the system can be characterized and trended to failure. The means and standard
deviations of the six signals for run 3 are shown in Figure 36. Signal features are calculated for each
timestep reported. These steps are not equally spaced in time; however, no information about sampling
rate is given to allow for different time averaging. Each time step includes 9000 observations, but time
steps span different durations. Because it is not precisely known how these measurements are made,
this is considered the best option for this data set. Plots of the mean and standard deviation for all

fifteen runs are given in Appendix A.

5.3.1 GA Optimized Parameter

The parameter identification method was applied to these twelve features to identify an optimal
prognostic parameter for the system. The parameter identified for the fifteen runs is shown in Figure 1.
This parameter has monotonicity, prognosability, and trendability metrics of 0.889, 0.807, and 0.829,
respectively. The parameter is used to develop a GPM/Bayes model for the entire population of milling
experiments. Because only fifteen example runs are available, the performance of the model is
measured through a leave-one-out method. That is, for each of the fifteen cases, the remaining
fourteen cases are used with the prognostic parameter to develop a GPM/Bayes model. RUL estimates
are made for the left out case using this model. In each case, the RUL is estimated at each observation.
Figure 38 gives the results of the prognostic model for Run 3 using the GA optimized parameter. The
model on a whole performed well, with an MAPE of 21.5% over the total lifetime. As a component
approaches failure, the error decreases to an average of 10.2% or better within the last three cycles

before failure.

Because the identification of appropriate prognostic parameters is automated, it is
straightforward to develop additional prognostic parameters beyond the single parameter for each
system. This data includes three operating conditions: depth of cut, feed, and material. A single mill run
involves only one set of operating conditions for each cut. Instead of applying one prognostic model to
the entire population, it may be more effective to classify runs according to one or more operating
condition and develop multiple prognostic models. The functions available in the PEP toolbox make this
extra step trivial for prognostic parameter optimization. The next section presents the results of

developing separate prognostic models for each of the two materials being milled: cast iron and steel.
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5.3.2 Material Specific Parameters

Two additional prognostic parameters are identified for the milling data based on the type of
material being milled. As indicated in Table 9, the milling experiments using steel have a much shorter
mean lifetime, only 13.0 cycles, compared to those using cast iron, which have a mean life of 51.9 cycles.
This indicates that it should be beneficial to separate these cases into two separate models. Three
operating conditions total are available; prognostic model performance may be further improved by
dividing the data according to two or all of these parameters. However, because only fifteen runs are
available, it is not possible with the available data set. Should more data become available, this is an

interesting course to pursue.

The optimized parameter for cast iron is shown in Figure 39, and that for steel in Figure 40. The
prognostic parameter suitability metrics and total suitability, given by the sum of the three metrics, for
these two parameters and the single parameter given earlier are presented in Table 10. By separating
the runs according to material, the prognostic parameter suitability increased slightly for both cases.
The resulting RUL estimations using these improved parameters showed improvement over the single
population parameter. Using the same leave-one-out methodology, each of the fifteen runs were
prognosed using the appropriate model. Separating the data according to material improved prognostic
performance by nearly 50%, giving an average RUL error of 12.3%, with a reduced error of 8.2% or less
within three cycles of failure. Figure 41 compares the performance of the two models.  This figure
shows that the material-specific models have better performance than the lumped model, which should

be expected from the improved parameter suitability metrics.

Using the automated parameter identification method for this data allowed for easily identifying
separate prognostic parameters for data in two groups: steel and cast iron. Allowing the computer to do
all the computationally heavy work allows a prognostic system designer to investigate many possible
competing parameters and choose among them. The PEP toolbox has the ability to identify prognostic
parameters for any number of data groups for easy comparison. For this example application, dividing
the cases by the material being bored afforded some improvement in the RUL estimation, particularly at

end of life when such estimation is most important.
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Table 10: Parameter Suitability Metrics for Milling Data

Monotonicity | Prognosability | Trendability | Suitability
Full Parameter 0.889 0.807 0.829 2.526
Iron Parameter 0.969 0.917 0.898 2.783
Steel Parameter 0.929 0.947 0.768 2.643
a0 RUL Estimates for Lumped Model and Material-Specific Models
o O Lumped Model
ao | #  Material Models |/

Estimated RUL

Actual RUL

Figure 41: RUL Estimates for Lumped and Material-Specific Models
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6 Conclusions

Estimation of remaining useful life is a burgeoning field in the reliability and maintenance
community. Prognostics is a key component in a full health monitoring system, which typically includes
system monitoring, fault detection and diagnostics, failure prognostics, and operations planning. While
system monitoring, fault detection, and diagnostics are well-established fields, prognostics is still in its
infancy. Despite prognostics’ relative youth as a research area, much attention has been given in the
last decade to the development of algorithms for predicting remaining useful life (RUL). These
algorithms can be classified into three categories based on the type of information they use to make
RUL predictions. Type | prognostics use traditional time-to-failure data to estimate the lifetime of an
average component operating in historically average conditions. Type Il prognostics, or stressor-based,
utilize environmental and operating conditions to characterize the lifetime of an average component
operating in a specific environment. Type lll prognostics, or degradation-based, are the only truly
individual prognostics algorithms. These methods use measures of system health to estimate the
lifetime of a specific component operating in its specific environment. As nuclear power plants approach
the end of their original design life, individual-based prognosis of the equipment health is paramount to
obtaining license extensions. Accurate prognostics can indicate which components need to be replaced
for continued safe operation and which are still operating within specifications. The most common Type
[l algorithm, and the one employed in this research, is the General Path Model (GPM), which tracks a
measure of system health called a prognostic parameter. The prognostic parameter may be a direct
measurement of system health, such as tire tread depth, or it may be inferred from other
measurements made on the system. A parametric model is fit to the prognostic parameter and
extrapolated to a pre-defined critical failure level. The RUL is estimated as the difference between the
current time and the time at which the extrapolated model crosses the failure threshold. This research
proposed a modification to the traditional GPM method which uses Bayesian updating methods to
incorporate prior information about the expected prognostic parameter path. Incorporating prior
information allows the GPM to be applied to systems with very few observations or whose observations
are contaminated by noise. A comparison of the application of the traditional GPM method and the

proposed GPM/Bayes method showed that the latter was able to make prognostic estimates in every
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case, whereas the former method was often unable to make RUL estimates very early in life. In
addition, the GPM/Bayes model had smaller Mean Absolute Percent Error (MAPE) for predictions made
early in system life; as more information became available, the error of the two methods converged
because in both cases prognostic estimates were based primarily on the available prognostic parameter

values with little emphasis on the prior information.

Additionally, the effect of noisy prognostic parameters on model performance was investigated.
It was shown that the GPM/Bayes methodology can perform in the face of significant noise
contamination. Parameter noise slows the response time of the regression model to transition from the
population-based prior information to the information contained in the system-specific observations.
However, as more observations become available, the model is able to determine the correct underlying
regression function despite high levels of noise. The RUL estimates made with clean data, data
contaminated with 20% noise, and data contaminated with 80% noise converged as the system aged

and approached end of life.

The performance of GPM prognostics depends primarily on the identification of an appropriate
prognostic parameter. lIdeally, a prognostic parameter should have three key qualities: monotonicity,
prognosability, and trendability. Monotonicity is a measure of the general positive or negative trend of
the prognostic parameter. Damage is generally assumed to be cumulative and irreversible. Because the
prognostic parameter can be considered an indicator of system health, if the parameter were not
monotonic, it would indicate some measure of self-healing is taking place. This assumption is not valid
for some specific components, such as batteries which do experience some increased capacity after a
period of rest. However, it is usually considered valid when dealing with an entire system.
Prognosability characterizes how well clustered the failure values are for a population of systems.
Because a critical failure threshold must be identified for the GPM model, failure values should be well
clustered in order to give a crisp failure value and reduce RUL uncertainty. Finally, trendability measures
how well each parameter for a population of systems can be described by the same underlying function.
The GPM depends on fitting a parametric model to the prognostic parameter and extrapolating it to
failure, so it is key that the same parametric function be applicable to the entire population of systems

with the same type of failure mechanism.
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By formalizing these metrics so that the suitability of a candidate prognostic parameter can be
guantified, it is straightforward to apply conventional optimization methods to identify an optimal, or
near-optimal, prognostic parameter from many possible data sources including sensed data, monitoring
system residuals, environmental and operational conditions, fault detection and diagnostic results, etc.
This research applied Genetic Algorithm (GA) optimization to identify appropriate prognostic
parameters for two very different data sets: the turbofan engine simulation data given in the PHM ’08
prognostic challenge and milling data, both available at the NASA Prognostic Data Repository. GA
runtime scales exponentially with the number of parameters to optimize; an input selection method was
presented to alleviate this computational burden. Inputs which have total suitability less than some
threshold, generally 1.5, are removed from the candidate parameter inputs. Application to the PHM
challenge data set showed that the GA of the full set of possible inputs and the reduced set resulted in
prognostic parameters of comparable performance, but with significantly reduced optimization runtime.
In addition, the examples investigating the effect of noise on parameter suitability and performance and
the milling data set indicate that parameter suitability is positively correlated with model performance;
that is, parameters with higher suitability metrics result in greater model performance on the measure

of mean absolute percent error of the failure time.

The PHM challenge data application utilized the results of a condition monitoring and fault
detection system to characterize the degradation in a given system. Prognostic parameters were
generated from a subset of the monitoring system residuals; monitoring system residuals are natural
components of a prognostic parameter because they inherently measure the deviation of a system from
normal operation. Three prognostic parameters were identified for the PHM ‘08 challenge data set: one
through visual inspection and two using the proposed optimization method. The three parameters had
comparable suitability metrics and resulted in comparable model performance on the test runs. The
parameter identified through visual inspection involved several weeks of expert analysis to form the
final parameter. Conversely, the first GA-optimized parameter, which included 11 monitoring system
residuals as possible inputs, took a fraction of a manhour to set up and 1.68 hours of unsupervised
computer runtime. The second GA-optimized parameter considered a subset of the eleven residuals,
using only five of the possible inputs. This optimization ran in 0.93 hours, nearly half the time of the full

optimization. This example application suggests that the proposed prognostic parameter selection
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method performs comparably to expert analysis in a fraction of the time. This application, however,

benefited from extensive analysis given to the system before the optimization method was developed.

The second example application utilized milling data available at the NASA repository. Several
prognostic parameters were quickly identified for this data set. The first parameter optimization
lumped all fifteen available runs together to develop one parameter for the entire population. In
addition, two separate parameters were developed for the two materials being bored: cast iron and
steel. By applying the automated method, it is simple to develop many competing prognostic models to
determine if additional factors, such as operating conditions, should be considered in model

development.

This research presented the development of the GPM/Bayes prognostic model and an
automated method for identifying appropriate prognostic parameters from many available data sources.
The efficacy of both methodologies was illustrated. Additionally, the development of a MATLAB-based
Process and Equipment Prognostics (PEP) toolbox was discussed. The original methods developed for
this dissertation, as well as other prognostic algorithms, are available in the PEP toolbox to aid in rapid
model prototyping and full health monitoring in conjunction with the Process and Equipment

Monitoring toolbox.
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7 Future Work

The area of failure prognostics holds many opportunities for continuing research beyond the
scope of this dissertation. Several such areas have been mentioned throughout this report; a few key

areas are outlined in greater detail here.

This research focused on a Genetic Algorithms approach to identifying prognostic parameters
from linear combinations of data sources. However, a more general approach would consider more
complicated functions of the available data, such as exponential functions. This may be accomplished
through the use of Genetic Programming and would be an interesting advancement on the current
work. In addition, a Genetic Programming approach may be useful for identifying the most appropriate

parametric function to fit a given prognostic parameter.

All empirical prognostics systems suffer from the need for failure data. A key area of research in
prognostics is development and dissemination of failure data for prognostic model development, either
collected in real-world or accelerated testing environments or simulated by high-fidelity physics of
failure models. Industry’s desire for proprietary failure information should become secondary to the
need to coalesce available information sources in order to develop accurate prognostic models and
algorithms. NASA has begun this push with the Prognostic Data Repository, but the few data sets
available there are the result of simulation or laboratory tests. Most of these data sets involve only a
few examples of failure, and sometimes failure is not clearly designated so it must be arbitrarily assigned
as in the milling data set used in this research. The availability of additional types of failure data which
include many examples of failure and give clear definitions of failure will aid researchers in developing

generic prognostics algorithms that can be applied to a variety of problems.

The PEP toolbox is designed to aid in the rapid development of empirical prognostic models;
however, choosing between competing models is not a trivial task. It is up to the developer to
determine the correct prognostic type and algorithm for each system. However, it may be possible to
facilitate, and to some extent automate, this task as well. By comparing the available data and
information for a particular system to the requirements of each prognostic method, appropriate models

for RUL estimation may be identified. As discussed earlier, some work has been completed to develop
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appropriate performance metrics for prognostic algorithms. However, this remains a grey area in the
field. A unified set of performance metrics would also allow for quick comparison of prognostic model

performance to aid in identifying the most appropriate model for a particular situation.

Three types of prognostics were introduced based on the information used to make RUL
estimations: Type |, or traditional reliability analysis; Type Il, or stressor-based; and Type Ill; or
degradation-based. During the course of a system’s lifetime, there is a natural progression between the
applicability of each of these three types. When a new system or component is acquired, the best
estimate of its total lifetime is population-based statistics, or Type | prognostics. As operations are
planned for the system and it is put into use, Type Il prognostics can be used to evaluate the effect of
planned usage on the system’s lifetime. Finally, as degradation occurs, if it is possible to quantify this
degradation, then Type Ill prognostics may be applied. Development of an intelligent method to move
between the three types of prognostics as they become applicable will make full lifecycle prognostics
possible. The proposed GPM/Bayes methodology considers both Type | and Type Ill prognostics, and
transitions between the two as more degradation data becomes available; however, a life-cycle
prognostic system should be able to move between the three, considering information from each type

as is appropriate.
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A.1 Noisy Prognostic Parameters
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A.2 The Effect of Noise on Model Performance
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RUL Estimates for Run 3
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RUL Estimates for Run 12
Failure Yalue = 224.8747 Threshold = 220.2997
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RUL Estimates for Run 14
Failure Yalue = 216.9345 Threshold = 221.8681
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A.3 PHM Challenge Data Monitoring System Residuals

Residual of Yariable 1

'
—_

Fesidual

ES

o 50 100 150 200 250 300 350 400
Time (cycles)

5 Residual of Yariable 3

Fesidual

Rl .‘!l}fl m

!
! ‘\h“ /\

A

_3 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Time (cycles)

115



Fesidual

Fesidual

-30
0

20

Residual of Yariable 4

50

100

150 200 250 300 350 400
Time (cycles)

Residual of Yariable 5

50

100

150 200 250 300 350 400
Time (cycles)

116



Residual

Fesidual

- Residual of Yariable 10

0 -
-50 -
-100 .
-150 =
_200 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Time (cycles)
- Residual of Yariable 12

_12 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Time (cycles)

117



Residual

Residual

-100

-120

-140

-160

-0.05

-0.15

- Residual of Yariable 15

20 b

-20

-40

-60

-80

0 50 100 150 200 250 300 350 400
Time (cycles)

Residual of Yariable 16
01 5 T T T T T T T

0.1 -

0.05

-041

-0.2
0

50 100 150 200 250 300 350 400
Time (cycles)

118



Fesidual
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A.4 Milling Data Mean and Standard Deviation Features
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Milling Data Run 3
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Milling Data Run 14
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Milling Data Run 16
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Appendix C: The Process and Equipment Prognostics Toolbox
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C.1 List of Functions

The Process and Equipment Prognostics (PEP) Toolbox is designed to work with the previously
developed Process and Equipment Monitoring (PEM) Toolbox to develop a suite of health management
tools. The PEP includes functionality to perform the three types of prognostic models described
previously in this report. Each of the functions currently integrated in the PEP Toolbox are described
below, categorized by function purpose. Code, including help headers, for each function is included in
the following pages in the same order. This list is continuously being updated as the PEP toolbox is
developed and improved.

Prognostic Model Function Calls

initprog() — This function initializes a Prognostics Toolbox model structure

runprog() — This function estimates the Remaining Useful Life (RUL) using the model previously
developed

Type | Models

initTypel() — This function initializes a reliability-based prognostic model structure

runTypel() — This function makes RUL estimates using a Type | (reliability based) prognostics model
Type Il Models

initMC() — This function initializes an MC model prognostics toolbox structure

MCprobs() — This function calculates the transition probability matrix and the initial condition probability
vector for a Type Il Markov Chain model

fitMC() — This function determines the coefficients to map time spent in each operating condition to
system degradation

runMC() — This function makes RUL estimates using a Type || MC model

initPHM() — This function initializes a Proportional Hazards Model structure
runPHM() — This function makes RUL estimates using a Proportional Hazards Model
initShock() — This function initializes a shock model prognostics toolbox structure
runShock() — This function makes RUL estimates using a Type Il Shock model

Type lll Models

initGPM() — This function initializes an GPM prognostic toolbox structure

fitGPM() — This function determines the best fit for a GPM prognostic model between linear, quadratic,
and exponential fits

initBayes() — This function calculates the initial Bayesian prior distribution for a GPM model.

threshGPM() — This function calculates the critical failure threshold for a GPM model based on the full
historic failure paths contained in param
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runGPM() — This function makes RUL estimates using a general path model

Parameter Identification

optparam() — This function uses Genetic Algorithms and parameter suitability metrics to identify a near-
optimal prognostic parameter from data sources

paramfit() - This function determines the fitness of a candidate prognostic parameter as the weighted
sum of monotonicity, prognosability, and trendability

ppmetrics() — This function characterizes the appropriateness of a prognostic parameter based on three
metrics

paramgen() — This function generates a population of prognostic parameters according to the options
saved in the structure param_struct

Data Preprocessing

MCdata() — This function converts operating condition data into data needed for Markov Chain Models

timestats2() — This function calculates basic time statistics for multivariate data.
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C.2 Prognostic Model Function Calls
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function model = initprog(type,varargin)

INITPROG Initialize prognostic model structure
This function initializes a Prognostics Toolbox model structure

Model = INITPROG('type',...) initializes a prognostic model of the
kind specified by 'type'. 'type' may be set to any of the following
strings

'typel’

'markovchain' (or 'mc')

'shock'’

'proportionalhazards' (or 'phm')

'generalpath' (or 'gpm')

Model = INITPROG('typel',TTF) initializes a Type I
(reliability-based) model using the failure times contained in the
column vector TTF

Model = INITPROG('typel',6 TTF,censored) initializes a Type I model
using the failure and censoring times contained in the column
vector TTF (nxl). The column vector censored (nxl) indicates
whether each value is a failure time (0) or a censored value (1)

INITPROG ('typel', TTF,censored, 'distribution’',distributiontype)
initializes a Type I model using the failure time distribution
indicated by distributiontype. distributiontype can be set to any
of the following strings:

'weibull'

'exponential' (or 'exp')

'normal'’
The default distribution type is Weibull. Note that the variable
censored may be omitted if all data points are actual failure times

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

% Model =
%

%

%

%

%

%

%

%

%

%

% Model = INITPROG('mc',6 operatingconditions) initializes an MC model
% usingthe historic operating parameter progressions to failure

% contained in the cell array operatingconditions. These conditions
% should be discrete and numbered 1-n (no ordinal relation is implied
% by the numbering). The degradation parameter is assumed to be a

% weighted linear combination of the time spent in each operating

% condition. Initial degradation is assumed to be identically zero.
% The critical failure threshold for this parameter is assumed to be
% 100 (effectively measuring 100% degradation). If the data contained
% in operatingconditions is not numbered from 1 to n, the data may be
% reformatted in MCdata() prior to initializing the model.
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Model = INITPROG('mc',6 operatingconditions,'flag',value,...)
initializes an MC model using the historic operating condition
progressions to failure and the user-supplied inputs indicated by
the 'flag'-value pairs. 'flag' may be set to any of the following,

with the default values given:
'Q' (calculated from data)

'u' (calculated from data)

The transition probability matrix
for moving between operating
conditions

The initial condition probability
vector

'f' (weighted sum of time spent in each condition) A function

'b' (calculated from data)

'threshold' (100)

'npop' (1000)

'RULcon' (0.95)

Model
model.

Model

for mapping operating conditions to
a degradation parameter. Should be
input as an anonymous function
Q(b,t)f(b,t) where b is a column
vector of coefficients and t is a
row vector of time spent in each
condition, 1-n

The vector of coefficients which is
used with £ to map the operating
conditions to a degradation
parameter

The critical failure threshold
applied to the degradation
parameter to indicate failure

The number of Monte Carlo
simulations generated for each RUL
estimation

The point in the resulting RUL
distribution which defines the RUL.
0.95 indicates that RUL estimate is
the point where the reliability of
the system is 0.95 (Failure
probability is 0.05)

INITPROG('shock',...) initializes a Shock model prognostic

INITPROG ( ‘phm’ ,cov,times) initializes a proportional hazards

model with the covariates defined in the nxp matrix cov and the
failure times in the nxl column matrix times. The baseline value is

taken to be zero.

Model = INITPROG (‘phm’ , cov,times,'flag',value...) initializes a
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proportional hazards model using the covariates and failures times
in the matrics cov and times, and the 'flag'-value pairs given.
'flag' may be set to any of the following, with the default values
given:

'frequency' (one for each observation) The jth element of this
nxl column vector indicates the number of
times that the combination of the jth set
of covariates and the jth failure time are
observed together

'censoring' (all zeros) The jth element of this nxl column
vector indicates whether that observation
is a failure time (0) or a censored time
(1)

'baseline' (zero) This 1lxp row vector indicates the baseline
values for each of the covariates

'beta'’ (calculated) The coefficients of the Cox proportional
hazards regression

'hazard' (calculated) The baseline cumulative hazard function
given as a 2-column matrix with failure
times in the first column and the
corresponding estimated cumulative hazard
rate in the second column

'RULcon' (0.95) The point in the resulting RUL distribution
which defines the RUL. 0.95 indicates that
RUL estimate is the point where the
reliability of the system is 0.95 (Failure
probability is 0.05)

Model = INITPROG('gpm',prognosticparameters) initializes a General
Path prognostic model using the historical prognostic parameters
contained in the cell array prognosticparameters.

Model = INITPROG('gpm',6 prognosticparameters,'flag',value...)
initializes a GPM using the historical prognostic parameters and
the values indicated by the 'flag' - value pairs. 'flag' may be set
to any of the following:

'bayesian' (true) Use Bayesian updating to include prior
information in function fitting (true
or false)

'updateinterval' (1) Number of time steps between fitting
updates (n, an integer)

'fit' (default is an optimization) Functional fit to use for
GPM fitting (entered as a cell array of
function handles, i.e.

f = {@(x)fl(x) @x(f2(x) ... @(x)fn(x)}
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where P(x) = £(x)*B). If a non-zero
intercept is required, an "@(x)1" entry
must be included.

'ytransform' (default is no transformation) Functional
transformation of y to make the
prognostic parameter linear in
parameters, i.e. if y = a*exp(bx) then
log(y) = log(a)+b*x, entered as
'ytransform' = Q(x)log(x) and 'fit' =
{@(x)1 @(x)x}

'threshold' (default is automatic determination) Specificy the
critical threshold value (for hard
thresholds) or the mean and standard
deviation in the form [m s] (for
threshold distributions)

'thresholdtype' ('hard')Hard threshold or distribution ('hard'
or 'pdf')

See also RUNPROG INITTYPEI INITMC INITSHOCK INITPHM INITGPM

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 2/18/2009

Copyright (c)

if strcmpi(type, 'typel')

model = initTypeI(varargin);
return

elseif strcmpi(type, markovchain')||strcmpi(type, 'mc')

model = initMC(varargin);
return

elseif strcmpi(type, 'shock')

model = initShock(varargin);
return

elseif strcmpi(type, proportionalhazards')||strcmpi(type, 'phm')

model = initPHM(varargin);
return

elseif strcmpi(type, ' generalpath')||strcmpi(type, gpm')

model = initGPM(varargin);
return

else error('prognostictoolbox:initprog:invalidtype', 'Invalid Prognostic Model
Type')

end
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function [RUL model] = runprog(model,varargin)

$RUNPROG Make prognostic estimates based on the previously developed model
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This function estimates the Remaining Useful Life (RUL) using the
model previously developed

RUL = RUNPROG (model,...) estimates the RUL for a component or
system based on the model. Additional inputs depend on the type of
model used for prognostics.

RUL = RUNPROG (model,currenttime) makes prognostic estimates for a
component or system that has lasted to time currenttime using a
Type I model. currenttime can be a scalar indicating the current
time for a single component or system, or it may be a vector
indicating the current time for a population of components or
systems. The RUL estimates for each individual in the population is
made independently.

RUL = RUNPROG (model) makes prognostic estimates using a Type IT
Markov Chain or Shock model. This call assumes that no information
is available about the actual or planned usage conditions and uses
the transition probability matrix in model for monte carlo
simulation from time zero.

RUL = RUNPROG (model,currentenvir) makes prognostic estimates using
a Type II Markov Chain or Shock model. The actual usage conditions
of the component or system are contained in the column vector
currentenvir, where the vector includes one observation for each
time step up to the current time. Future usage conditions are
estimated using the transition probability matrix contained in the
model.

RUL = RUNPROG (model, currentparam) makes prognostic estimates using
a Type IIT model. model should be of type 'gpm'. currentparam is
matrix, cell array or column vector containing the prognostic
parameter values to the current time. For a list of acceptable data
entry methods see runGPM.

[RUL model] = RUNPROG (model,currentparam) makes prognostic
estimates using a Type III model and returns an updated model
structure. The only change made to the model structure is to
update the bayesianprior field with the calculated posterior
distribution which is the new prior.

See also INITPROG RUNTYPEI RUNGPM RUNMC
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type = model.type;

if strcmpi(type, 'typel')
RUL = runTypeI(model,varargin);
return
elseif strcmpi(type, markovchain')||strcmpi(type, 'mc')
RUL = runMC(model,varargin);
return
elseif strcmpi(type, 'shock')
RUL = runShock(model,varargin);
return
elseif strcmpi(type, proportionalhazards')||strcmpi(type, 'phm')
RUL = runPHM(model,varargin);
return
elseif strcmpi(type, ' generalpath')||strcmpi(type, gpm')
[RUL model] = runGPM(model,varargin);
return
else error('prognostictoolbox:runprog:invalidtype', 'Invalid Prognostic Model
Type')
end
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function model = initTypeI(inputs)

INITTYPEI Initialize a Type I (reliability-based) prognostic model
This function initializes a reliability-based prognostic model
structure

Model = INITTYPEI (TTF) initializes a reliability-based prognostic
model using the failure times in the vector TTF. This model uses a
Weibull distribution to model failure times.

Model = INITTYPEI (TTF,censored) initializes a model using the
failure and censoring times in the vector TTF. The variable
censored indicates whether each observed time is a failure (0) or

%

%

%

%

%

%

%

%

%

%

%

% censored (1) time.
%

% Model = INITTYPEI (TTF,censored, 'distribution',distributiontype)

% initializes a Type I model using the failure time distribution

% indicated by distributiontype. distributiontype can be set to any
% of the following strings:

% 'weibull'

% 'exponential' (or 'exp')

% 'normal'’

% The default distribution type is Weibull. Note that the variable
% censored may be omitted if all data points are actual failure times
%

Jamie Coble

The University of Tennessee, Knoxville

Nuclear Engineering Department

Last Update: 9/16/2008

Copyright (c)
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$ extract TTF data %
TTF = inputs{l};

flags = [];
% set variable censored and extract flag/value pairs%
if size(inputs,2)>1
if isnumeric(inputs{2})
censored = inputs{2};
if size(inputs,2)>2
pairs = {inputs{3:end}};
[flags values] = getfvp(pairs);
end
else censored = zeros(size(TTF));
if size(inputs,2)>2
pairs = {inputs{2:end}};
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[flags values] = getfvp(pairs);
end
end
else censored = zeros(size(TTF));
end

% initialize default model architecture %

model = struct( 'type', 'Typel', 'distribution', 'weibull', 'parameters',[],...
'data’',struct( 'max',max(TTF), 'min',min(TTF), MTTF',mean(TTF)));

% apply user specifications if necessary %
for i = l:length(flags)
if strcmpi(flags{i}, 'distribution’)
model.distribution = values{i};
else error('prognostictoolbox:initTypeI:invalidflag', 'Invalid flag')
end
end

if strcmpi(model.distribution, 'weibull')
p = wblfit(TTF,0.05,censored);
model.parameters = struct( 'beta',p(2), theta',p(l));
elseif
strcmpi(model.distribution, 'exponential')||strcmpi(model.distribution, 'exp')
model.parameters = struct('lambda',expfit(TTF,0.05,censored));
elseif strcmpi(model.distribution, 'normal')
[m s] = normfit(TTF,0.05,censored);
model.parameters = struct('mean',m, 'stddev',s);
else error('prognostictoolbox:initTypeI:invaliddistribution’, ...
'Invalid TTF Distribution')
end
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function MRL = runTypel(model,currenttime)

$RUNTYPEI Make RUL estimates using a Type I prognostics model.
This function makes RUL estimats using a Type I (reliability
based) prognostics model.

RUL = RUNTYPET (model,currenttime)makes prognostic estimates for a
component or system that has lasted to time currenttime using a
Type I model. currenttime can be a scalar indicating the current
time for a single component or system, or it may be a vector
indicating the current time for a population of components or
systems. The RUL estimates for each individual in the population is
made independently.

currenttime may be input as a column or row vector; the RUL
predictions will be returned in the same format.

RUL is calculated as the mean residual life at time currenttime.
MRL(t) = 1/R(t)*int(R(s),s = t->inf)
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currenttime = cell2mat(currenttime);
dist = model.distribution;
MRL = zeros(size(currenttime));

if strcmpi(dist,'exp')||strcmpi(dist, 'exponential')
for i = l:length(currenttime)

MRL = 1./(l-expcdf(currenttime,model.parameters.lambda)).*trapz(...
l-expcdf([currenttime(i):model.data.max*100],...
model.parameters.lambda));

end
elseif strcmpi(dist, 'weibull')
for i = l:length(currenttime)

MRL(i) = 1./(l-wblcdf(currenttime(i),model.parameters.theta,...
model.parameters.beta)).*trapz(l-wblcdf([currenttime(i):...
model.data.max*100],model.parameters.theta, ...
model.parameters.beta));

end
elseif strcmpi(dist, 'normal')
for i = l:length(currenttime)

MRL = 1./(l-normcdf(currenttime,model.parameters.mean,...
model.parameters.stddev)).*trapz(l-normcdf([currenttime(i):...
model.data.max*100],model.parameters.mean, ...
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model.parameters.stddev));
end
else error( 'prognostictoolbox:runTypeI:invaliddistribution',...
'Invalid TTF Distribution')
end
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C.4 Typell Models
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function model = initMC(inputs)

numbering) .

pairs.
values given:
'Q' (calculated from data)

'u' (calculated from data)

'b' (calculated from data)

'threshold' (100)

(1000)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% 'npop'’
%

%

Model = INITMC (operatingconditions,'flag',6value,.
an MC model using the historic operating condition progressions to
failure and the user-supplied inputs indicated by the
'flag' may be set to any of the following, with the default

INITMC Initialize a Type II Markov Chain Prognostic Model
This function initializes an MC model prognostics toolbox structure

Model = INITMC (operatingconditions) initializes an MC model using

the historic operating parameter progressions to failure contained
in the cell array operatingconditions.
discrete and numbered 1-n (no ordinal relation is implied by the

The degradation parameter is assumed to be a weighted
linear combination of the time spent in each operating condition.
Initial degradation is assumed to be identically zero.
critical failure threshold for this parameter is assumed to be 100
(effectively measuring 100% degradation).
operatingconditions is not numbered from 1 to n,
reformatted in MCdata() prior to initializing the model.

These conditions should be

The

If the data contained in
the data may be

..) initializes

'flag'-value

The transition probability matrix
for moving between operating
conditions

The initial condition probability
vector

'f' (weighted sum of time spent in each condition) A function

for mapping operating conditions to
a degradation parameter. Should be
input as an anonymous function
Q(b,t)f(b,t) where b is a column
vector of coefficients and t is a
row vector of time spent in each
condition,
The vector of coefficients which is
used with £ to map the operating
conditions to a degradation
parameter

The critical failure threshold
applied to the degradation
parameter to indicate failure

The number of Monte Carlo
simulations generated for each RUL
estimation

1-n
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% 'RULcon' (0.95) The point in the resulting RUL

% distribution which defines the RUL.
% 0.95 indicates that RUL estimate is
% the point where the reliability of

% the system is 0.95 (Failure

% probability is 0.05)

%

% See also INITPROG MCDATA MCPROBS FITMC RUNMC

% Jamie Coble

% The University of Tennessee, Knoxville

% Nuclear Engineering Department

% Last Update: 6/26/2009

% Copyright (c)

oc = inputs{l};
flags = [];
if size(inputs,2)>1
pairs = {inputs{2:end}};
[flags values] = getfvp(pairs);
end

model = struct('type','MC','Q',[]1,'u',[], ' £',[1,'D",[], threshold',b100,...
'npop',1000, 'RULcon',0.95);

for i = l:length(flags)
if strcmpi(flags{i}, 'Q")
model.Q = values{i};
elseif strcmpi(flags{i},'u')
model.u = values{i};
elseif strcmpi(flags{i},'f'")
model.f = values{i};
elseif strcmpi(flags{i},'b")
model.b = values{i};
elseif strcmpi(flags{i}, threshold')
model.threshold = values{i};
elseif strcmpi(flags{i}, 'npop')
model.npop = values{i};
elseif strcmpi(flags{i}, 'RULcon')
model.RULcon = values{i};
else error('prognostictoolbox:initGPM:invalidflag', 'Invalid flag')
end
end

if isempty(model.Q)||isempty(model.u)
[g@ u] = MCprobs(oc);
if isempty(model.Q)
model.Q = qg;
end
if isempty(model.u)
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model.u = u;
end
end

if isempty(model.f)
model.f = @(b,t)t*b;
end

if isempty(model.b)
model.b = fitMC(oc,model.f,model.threshold);
end
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function [Q u] = MCprobs(oc)

% MCPROBS calculate the transition and initial condition probabilities

% This function calculates the transition probability matrix and the
% initial condition probability vector for a Type II Markov Chain

% model

%

% [Q@ u] = MCPROBS (operatingconditions) calculates the transition

% probability matrix (Q) and the initial condition vector (u) for a
% Type II Markov Chain model using the operating condition

% progressions to failure contained in the cell array

% operatingconditions

%

% See also INITMC MCDATA RUNMC

% Jamie Coble

% The University of Tennessee, Knoxville

% Nuclear Engineering Department

% Last Update: 6/26/2009

% Copyright (c)

% determine the number of operating conditions

cond = [];
for i = l:length(oc)
cond = [cond; unique(oc{i})];
end
cond = unique(cond);
ncond = max(cond);

% initialize count and u with zeros %

count = zeros(ncond,ncond);
u = zeros(1l,ncond);

for i l:1length(oc)
f = oc{i};
u(f(1)) = u(f(1))+1;
for j = 2:length(f)
count (£(3-1),£(j)) = count(£(j-1),£(3))+1;
end
end

u = u./sum(u);
countsums = sum(count,2);

Q = count./(countsums*ones(1l,ncond));

150



function b = fitMC(oc,model,thresh)

% MCFIT Fit the coefficients of a model to map operating conditions to

% degradation

% This function determines the coefficients to map time spent in each
operating condition to system degradation.

b = MCFIT (operatingconditions,model, threshold) calculates the
appropriate coefficients to fit the time spent in each operating
condition, calculated from the operating conditions progressions to
failure contained in the cell array operatingconditions, to the
model (given by an anonymous function of the form Q@(b,t)f(b,t))
with ending value equal to threshold

o0 d° A A O° I o° o0 o° o°

See also INITMC MCDATA RUNMC

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 6/26/2009

Copyright (c)

o0 d° d° o° oP°

% Define Y values at end of life to be equal to the failure threshold
y = thresh*ones(length(oc),1);

% Calculate t values, the time spent in each operating condition, for each
% historic failure progression

% determine number of operating conditions

cond = [];
for i = l:length(oc)
cond = [cond; unique(oc{i})];
end
cond = unique(cond);
ncond = max(cond);

t = zeros(length(oc),ncond);
for i = l:length(oc)
for j = l:ncond
t(i,3J) = sum(oc{i}==j);
end
end

b = nlinfit(t,y,model, zeros(ncond,l));
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function [RUL ttf] = runMC(model,inputs)

RUNMC Calculate Type II Markov Chain prognostic model RUL estimate
This function makes RUL estimates using a Type II MC model

%
%
%
% RUL = RUNMC (model,operatingconditions) makes prognostic estimates

% using a Type II Markov Chain model. model should be of type 'MC'.
% operating conditions is a column vector of the operating conditions
% seen by the unit under test up to the current time. If

% operatingconditions is a cell array of column vectors, one vector

% for the operation of a single unit to the current time, then RUL is
% a row vector of RUL times.

%
%
%
%
%

RUL = RUNMC (model, 'new') calculates the expected RUL of a system
starting from new, with no information about its operating states.

See also RUNPROG INITMC MCDATA MCPROBS FITMC

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 6/26/2009

Copyright (c)

o0 o0 d° o° o°

oc = inputs;
if ~iscell(oc)

oc = {oc};
end

fit = model.f;

b = model.b;

thresh = model.threshold;
npop = model.npop;

Q = model.Q;

Q2 = cumsum(Q,2);

RULcon = model.RULcon;
ncond = length(Q);

u = model.u;

RUL
ttf

NaN(size(oc));
NaN (npop,size(oc,2));

for i = 1l:length(RUL)
unit = oc{i};

% determine current degradation level
t = zeros(1l,ncond);
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end

if ~strcmpi(unit, 'new')
for j = l:ncond

t(j) = sum(unit==j);

end

deg = fit(b,t);
else deg = 0;
end

for j = l:npop
deg_n = deg;
t n=t;

if strcmpi(unit, 'new')
old state = find(rand<=cumsum(u),1l);
else old_state = unit(end);

end

% generate future possible paths

while deg n<thresh

new_state = find(rand<=Q2(old_state,:),1)
t _n(new_state)+1;
deg n = fit(b,t _n);

t n(new_state) =

end

if strcmpi(unit, 'new')
ttf(j,i) = sum(t_n);
else ttf(j,i) = sum(t_n) - sum(t);

end
end

RUL(i) = quantile(ttf(:,i),1-RULcon);
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function model = initPHM(inputs)

INITPHM Initialize a Type II Proportional Hazards Prognostic Model
This function initializes an PHM prognostics toolbox structure

Model = INITPHM(cov,times) initializes a proportional hazards model
with the covariates defined in the nxp matrix cov and the failure
times in the nxl column matrix times. The baseline value is taken
to be zero.

%
%
%
%
%
%
%
%
% Model = INITPHM (cov,times,'flag',value...) initializes a

% proportional hazards model using the covariates and failures times
% in the matrics cov and times, and the 'flag'-value pairs given.

% 'flag' may be set to any of the following, with the default values
% given:

% 'frequency' (one for each observation) The jth element of this
% nxl column vector indicates the number of

% times that the combination of the jth set

% of covariates and the jth failure time are
% observed together

% 'censoring' (all zeros) The jth element of this nxl column

% vector indicates whether that observation

% is a failure time (0) or a censored time

% (1)

% 'baseline' (zero) This 1lxp row vector indicates the baseline
% values for each of the covariates

% 'beta'’ (calculated) The coefficients of the Cox proportional

% hazards regression

% 'hazard' (calculated) The baseline cumulative hazard function

% given as a 2-column matrix with failure

% times in the first column and the

% corresponding estimated cumulative hazard

% rate in the second column

% 'RULcon' (0.95) The point in the resulting RUL distribution
% which defines the RUL. 0.95 indicates that
% RUL estimate is the point where the

% reliability of the system is 0.95 (Failure
% probability is 0.05)

%

%

See also INITPROG

o°

Jamie Coble
The University of Tennessee, Knoxville
% Nuclear Engineering Department

o°
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% Last Update: 2/18/2010
% Copyright (c)

cov = inputs{l};
failtimes = inputs{2};

flags = [];
if size(inputs,2)>2

pairs = {inputs{3:end}};

[flags values] = getfvp(pairs);
end

model = struct( 'type', 'PHM', 'beta’',[], hazard',[],...
'baseline',zeros(l,size(cov,2)), RULcon',0.95);

freq = ones(size(failtimes));

cens = zeros(size(failtimes));

for i = l:length(flags)
if strcmpi(flags{i}, 'frequency')
freq = values{i};
elseif strcmpi(flags{i}, 'censoring')
cens = values{i};
elseif strcmpi(flags{i}, 'baseline’)
model.baseline = values{i};
elseif strcmpi(flags{i}, 'beta’)
model.beta = values{i};
elseif strcmpi(falgs{i}, 'hazard')
model.hazard = values{i};
elseif strcmpi(flags{i}, 'RULcon')
model.RULcon = values{i};
else error('prognostictoolbox:initPHM:invalidflag', 'Invalid flag')
end
end

if isempty(model.beta) || isempty(model.hazard)
[b 1logl h stats] = coxphfit(cov,failtimes, 'frequency',freq,...
'censoring',cens, 'baseline',model.baseline);
if isempty(model.beta)
model.beta = b;
end
if isempty(model.hazard)
model.hazard = h;
end
end
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function [RUL F] = runPHM(model, inputs)

RUNMC Calculate Proportional Hazards Model prognostic model RUL estimate
This function makes RUL estimates using a Proportional Hazards
Model

RUL = RUNPHM (model,covariates) makes prognostic estimates

using a Proportional Hazards model. RUL estimates are made for a
system running with the covariate values given in the nxp column
vector, covariates, where one row corresponds to the covariates

%

%

%

%

%

%

%

%

% experienced during once cycle.
%

% [RUL F] = RUNPHM (model,covariates) gives the RUL estimate defined
% by the appropriate reliability confidence level and the Failure

% time distribution, F, which is an nx2 matrix, where the first

% column contains Failure Times (not RULs) and the second column

% contains the probability of failure at that time.

%

%

See also RUNPROG INITPHM

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 2/18/2010

Copyright (c)

o0 d° o° o° oP°

if iscell(inputs)
inputs = inputs{1l};
end

hazard = model.hazard;

beta = model.beta;

RULcon = model.RULcon;

mcov = mean(inputs);

currenttime = size(inputs,l);

currenttimeind = find(abs(hazard(:,l)-currenttime)==min(abs(hazard(:,1)-
currenttime)));

% find new hazard rate %
haz prime = hazard(:,2)*exp(mcov*beta);

% find new Reliability function and find conditional reliability at current
time %

R = exp(-haz _prime);

R = R./R(currenttimeind);

% find Time of Failure %
tof = hazard(abs(R-RULcon) == min(abs(R-RULcon)),1);
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RUL = tof - currenttime;

faildist = 1-R(currenttimeind:end,:);
F = [hazard(currenttimeind:end,l) [0;diff(faildist)]];
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function model = initShock(inputs)

INITSHOCK Initialize a Shock Model
This function initializes a shock model prognostics toolbox structure

Model = INITSHOCK (shocks) initializes a shock model using the
progression of random shocks contained in the cell array shocks.

Model = INITSHOCK (shocks, 'flag',value,...) initializes a shock model
using the progression of random shocks contained in the cell array
shocks and and the values indicated by the 'flag' - value pairs. 'flag'
may be set to any of the following:

%

%

%

%

%

%

%

%

%

%

%

% 'timedist' (static) Distribution of occurence of shocks
% ('exponential', 'normal', 'lognormal')
% 'timepar' (distribution fit)Parameters of time distribution

% 'magdist' (normal) Distribution of the magnitude of shocks
% ('constant', 'normal', 'nonparametric')
% 'magpar' (distribution fit) Parameters of magnitude distribution

% 'thresholdtype' ('hard') Hard threshold or distribution ('hard'
% or 'pdf')

% 'threshold' (calculation) Specificy the critical threshold value
% (for hard thresholds) or the mean and
% standard deviation in the form [m s]

% (for threshold distributions)

Jamie Coble

The University of Tennessee, Knoxville

Nuclear Engineering Department

Last Update: 7/6/2009

Copyright (c)

o0 o0 d° o° o

shocks = inputs{l};
flags = [];
if size(inputs,2)>1
pairs = {inputs{2:end}};
[flags values] = getfvp(pairs);
end

model = struct('type', 'Shock', 'noisevar',[], timedist', 'exponential’',...
"timepar',[], 'magdist', 'normal', 'magpar',[], ' 'thresholdtype', 'hard',...
"threshold',[]);

% set flag values %
for i = l:length(flags)
if strcmpi(flags{i}, 'timedist')
model.timedist = values{i};
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end

elseif strcmpi(flags{i}, timepar')
model.timepar = values{i};

elseif strcmpi(flags{i}, 'magdist')
model.magdist = values{i};

elseif strcmpi(flags{i}, 'magpar')
model.magpar = values{i};

elseif strcmpi(flags{i}, thresholdtype')
model.thresholdtype = values{i};

elseif strcmpi(flags{i}, threshold')
model.threshold = values{i};

else error('prognostictoolbox:initShock:invalidflag', 'Invalid flag')

end

% estimate the noise in the data %

nvar

for

end

= zeros(l,length(shocks));
i = 1l:length(shocks)
nvar(i) = enovar(shocks{i}, 'medianfilter',4);

noise var = mean(nvar);

% identify shocks %

for

end

i = 1l:length(shocks)
[peaks{i} times{i}] = findpeaks(shocks{i}, 'minpeakheight',...
3*sgrt(noise_var)+mean(shocks{i}));

% estimate noise in shock-less data %

nvar2 = zeros(l,length(shocks));

for

end

i = length(shocks)

data = shocks{i};

data(times{i}) = [];

nvar2(i) = enovar(data, 'medianfilter'4);

model.noisevar = mean(nvarl);

% calculate time between shocks, if necessary %

if isempty(model.timepar)

end

% calculate magnitude of shocks, if necessary %

if isempty(model.magpar)

peak = cell2mat(peaks);
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C.5 Typelll Models
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function model = initGPM(inputs)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

INITGPM Initialize a General Path Prognostic Model

This function initializes an GPM prognostic toolbox structure

Model = INITGPM (prognosticparameters) initializes a GPM model using
the historic paths contained in the cell array
prognosticparameters. The most appropriate fit is chosen from
quadratic, linear, and exponential fits.

Model = INITGPM (prognosticparameters,'flag',value,...) initializes
a GPM model using the historical prognostic parameters and the
values indicated by the 'flag' - value pairs. 'flag' may be set to
any of the following:

'bayesian' (true) Use Bayesian updating to include prior
information in function fitting (true
or false)

'noise' (calculated using enovar() in PEM) An estimate of the
noise variance

'updateinterval' (1) Number of time steps between fitting
updates (n, an integer)

'fit' (default is an optimization) Functional fit to use for
GPM fitting (entered as a cell array of
function handles, i.e.

f = {@(x)fl(x) @x(f2(x) ... Q@(x)fn(x)}
where P(x) = f£(x)*B). Function must be
linear in parameters for this type of
entry. If a non-zero intercept is
required, an "Q@(x)1" entry must be
included. If no fit is given, an
optimization is performed for the best
fit among linear, quadratic, and
exponential models.

'ytransform' (default is no transformation) Functional
transformation of y to make the
prognostic parameter linear in
parameters, i.e. if y = a*exp(bx) then
log(y) = log(a)+b*x, entered as
'ytransform' = @(y)log(y) and 'fit' =
{@(x)1 @(x)x}

'threshold' (default is automatic determination) Specificy the
critical threshold value (for hard
thresholds) or the mean and standard
deviation in the form [m s] (for
threshold distributions)
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% 'thresholdtype' ('hard')Hard threshold or distribution ('hard'
% or 'pdf')

% 'threshcon' (0.95) The confidence level at which the

% threshold is calculated. Only

% applicable for "hard" type thresholds.
%

% See also INITPROG INITBAYES FITGPM THRESHGPM RUNGPM PPMETRICS

% Jamie Coble

% The University of Tennessee, Knoxville

% Nuclear Engineering Department

% Last Update: 2/18/2009

% Copyright (c)

progparam = inputs{l};
flags = [];
if size(inputs,2)>1

pairs = {inputs{2:end}};
[flags values] = getfvp(pairs);

end

model = struct('type', 'GPM', 'bayesian',true, 'updateinterval',l, 'fit',[],...
"threshold',[], 'thresholdtype', 'hard’', ...

'ytransform',@(y)y,
'threshcon',0.95);

for i = l:length(flags)

if strcmpi(flags{i}, 'bayesian')

model.bayesian

values{i};

elseif strcmpi(flags{i}, 'updateinterval')
model.updateinterval = values{i};
elseif strcmpi(flags{i}, 'fit'")
model.fit = values{i};
elseif strcmpi(flags{i}, 'ytransform')

model.ytransform

= values{i};

elseif strcmpi(flags{i}, 'threshold")

model.threshold

= values{i};

elseif strcmpi(flags{i}, 'thresholdtype')
model.thresholdtype = values{i};
elseif strcmpi(flags{i}, 'threshcon')

model.threshcon

= values{i};

else error('prognostictoolbox:initGPM:invalidflag', 'Invalid flag')

end
end

if isempty(model.fit)

[model.fit model.ytransform] = fitGPM(progparam);

end

if isempty(model.threshold)
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model.threshold = threshGPM(progparam,model.fit,model.ytransform,...
model.thresholdtype,model.threshcon);
end

if model.bayesian

model.noisevar = [];

[model.bayesianprior model.noisevar] =
initBayes(progparam,model.fit,model.ytransform);
end
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function [fit ytransform]= fitGPM(progparam)

$SFITGPM Fit a GPM prognostic model

% This function determines the best fit for a GPM prognostic model

% between linear, quadratic, and exponential fits

%

% [Function Ytransform] = FITGPM(prognosticparameters) determines the
% best fit for the historic paths contained in the cell array

% prognosticparameters. The function considers linear, quadratic, and
% exponential fits. Ytransform gives the transformation of y needed

% to make the fit linear in parameters. This has value @ (y)log(y)

% for exponential functions and @(y)y (indicating no transformation

% is needed) for linear and quadratic functions.

%

% Jamie Coble

% The University of Tennessee, Knoxville

% Nuclear Engineering Department

% Last Update: 2/18/2009

% Copyright (c)

h = waitbar(0, 'Optimizing GPM Fit');
errors = zeros(size(progparam,2),3);

% possible fits are Linear Quadratic Exponential %

vyt = {@(y)y @(y)y €(y)log(y)}:
f = {{@(x)x @(x)1} {@(x)x."2 @(x)x @(x)1} {@(x)x Q@(x)1}};

for i = 1:3

for j l:size(progparam,2)
p = progparam{j};
if size(p,2)==2
t =p(:,1);
Yy = p(:,2);
else y = p; t = [l:size(y,1)]1";

end
X = zeros(size(t,l),size(£f{i},2));
for k = 1:size(£f{i},2)
x(:,k) = £{i}{k}(t);
end
yE = yt{i}(y);
bfit = inv(x'*x)*(x'*yf);
g = yinv(yt{i});
errors(j,i) = sqrt(mean((g(x*bfit)-y)."2));
end
waitbar(i/3,h)
end

mses = nanmean(errors);
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fit = f{find(mses==min(mses),1l)};
ytransform = yt{find(mses==min(mses),1)};

close(h)

%%

function f = yinv(yt)

if any(strfind(func2str(yt), 'log'))
f = @(x)exp(x);

else £ = Q(x)x;
end
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function [prior nvar] = initBayes(progparam,f,yt)

$INITBAYES Determine the initial Bayesian prior for a GPM model

o0 Jd° I A 0 I I A O O° I O° I I A o0 o0 o

o0 o0 d° o° oP°

h

This function calculates the initial Bayesian prior distribution
for a GPM model.

Prior = INITBAYES (prognosticparameters,fit,ytransform) calculates

the Bayesian prior distribution for the coefficients, b, of the
functional fit f(b,t) where fit is a cell array of the form
f(x) = {@(x)fl(x) @(x)f2(x) ... @(x)fn(x)} and ytransform is a
function handle P(y) = @Q(y)fy(y), where P(y) = f£(x)*b for the
historic prognostic parameter paths contained in the cell array
prognosticparameters. It is assumed that the coefficients are
normally distributed with mean and variance calculated from the

population of fits. Prior is a matrix which contains the mean value
for each parameter in the first row and the standard deviation in

the second row:

prior = [ml m2 ... mn
sl s2 ... sn]

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 9/18/2008

Copyright (c)

waitbar (0, 'Calculating Bayesian Priors');

sizeb = size(f,2);

b _est

zeros (size(progparam,2),sizeb);

noisevar = zeros(size(progparam,2),1l);

for i = 1l:size(progparam,2)

p = progparam{i};
if size(p,2)==2

t =p(:,1);
Yy = p(:,2);
else y = p; t = [l:size(y,1)]1";

end
X = zeros(size(t,l),size(£f,2));
for k = 1:size(f,2)

x(:,k) = £{k}(t);

end

y = yt(y);

b est(i,:) = inv(x'*x)*(x'*y);
noisevar(i) = enovar(y, medianfilter',64);

waitbar(i/size(progparam,2),h)
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end

prior = [mean(b_est);std(b_est)];
nvar = mean(noisevar);

close(h)
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function thresh = threshGPM(progparam,fit,yt,type,threshcon)

$THRESHGPM Determine the critical failure threshold for GPM model

This function calculates the critical failure threshold for a GPM
model based on the full historic failure paths contained in
progparam.

o0 d° o° o° o

Threshold = THRESHGPM (prognosticparameters,fit,yt) determines the
critical

failure threshold for the paths contained in the cell array
prognosticparameters. The function calculates a hard threshold as
the conservative 95th percentile of the failure values for the
historic paths.

o0 d° d° o° o0 o

Threshold =
THRESHGPM (prognosticparameters,fit,yt, thresholdtype, threshcon)

% determines the critical failure threshold using the type specified
% by thresholdtype. Thresholdtype may be set to either

% 'hard’ A constant value is used for the critical failure
% threshold. This value is the conservative 95th

% quantile of the failure values for the historic

% paths

% 'pdf’ A distribution of critical threshold values is

% determined. The failure values are assumed to be

% normally distributed with mean and variance as

% determined by the historic paths. The threshold

% distribution is returned as a 1x2 vector of the

% form [mean standarddeviation]

% Threshcon indicates the confidence level at which the threshold is
% calculated from the failure values.

%

% Jamie Coble

% The University of Tennessee, Knoxville

% Nuclear Engineering Department

% Last Update: 9/18/2008

% Copyright (c)

h = waitbar(0, 'Calculating GPM Threshold');
if nargin ==

type = 'hard';
end

% determine parameter value at failure for each historic path %

failval = NaN(size(progparam,2),1);
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for j = l:size(progparam,?2)
p = progparam{j};
if size(p,2)==2
t =p(:,1);
Yy = p(:,2);
else y = p; t = [l:size(y,1)]"';
end
x = zeros(size(t,1l),size(fit,2));
for k = 1l:size(fit,2)
x(:,k) = fit{k}(t);
end
y = yt(y);
bfit = (x'*x)\(x'*y);
startval(j) = x(1,:)*bfit;
failval(j) = x(end,:)*bfit;
waitbar(j/(size(progparam,2)+1),h)

end

%

% for i = l:size(progparam,2)

% failval (i) = progparam{i} (end,end) ;
% waitbar(i/ (size (progparam,2)+1) ,h)
% end

if strcmpi(type, 'hard')

if abs(mean(startval)-quantile(failval,threshcon))<abs(mean(startval)-
quantile(failval,l-threshcon))

thresh = quantile(failval,threshcon);

else thresh = quantile(failval,threshcon);

end
elseif strcmpi(type, 'pdf')

thresh = [mean(failval) std(failval)];
else error('prognosticstoolbox:threshGPM:invalidtype', 'Invalid threshold

type');
end
close(h)
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function [RUL model] = runGPM(model,varargin)

%$RUNGPM Make RUL estimates using a GPM model.

o0 d° A A O I A A O I I O I A A O I A A N I I A N I I N N N I O I I I o o o°

o0 o0 d° o°

This function makes RUL estimates using a general path model.

RUL = RUNGPM (model,currentparam) makes prognostic estimates using
a Type IITI model. model should be of type 'gpm'. currentparam may
be a column vector, matrix, or cell array. If only one system is
under surveillance, currentparam should be a column vector
containing observations of that system up to the current time. If
multiple systems are under surveillance, and parameter observations
are available for the same time steps for each system, currentparam
may be a matrix whose columns contain the parameter observations
for a single system. If multiple systems are under surveillance
which have been running for different amounts of time, currentparam
may be a cell array containing the parameter observations for each
system in a column vector contained in separate cells. Here, it is
assumed that observations are made every time unit, with an equal
sampling interval.

RUL = RUNGPM (model,currentparam) may also be used for multiple
systems under surveillance where the time stamp for each system is
not the same. In this case, currentparam should be a cell array
whose cells contain an nx2 matrix where the first column is the
time stamp for that particular unit and the second column is the
parameter values at each time.

RUL = RUNGPM (model, timestamp,currentparam) can be used when the
sampling interval is not equal across observations. If currentparam
is a column vector, then timestamp should also be a column vector.
If currentparam is a matrix, then timestamp may be a column vector
of times (if each unit is surveyed at the same time) or it may be a
matrix of times (if surveillance times for each unit are
different).

[RUL model] = RUNGPM(...) returns the estimated RUL and the model
structure with an updated Bayesian prior for future estimates. No
other fields are changed.

See also RUNPROG INITGPM INITBAYES FITGPM THRESHGPM

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 10/21/2008
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% Copyright (c)
options = optimset('Display', 'off'); % set options for use with fzero()

% put data into cell arrays where each cell is an nx2 matrix. the first
% column is the time stamp and the second column is the series of parameter
% values for that system
if size(varargin,2)==1
tmp = varargin{l};

if ~iscell(tmp) % a matrix of param values is supplied, no time %
for i = l:size(tmp,2)
currentparam{i} = [[l:size(tmp,1l)]' tmp(:,1i)];
end

elseif size(tmp{l},2)==1 % a cell array of param values is supplied, no
time %
for i = l:size(tmp,1)

currentparam{i} = [[l:size(tmp{i},1)]"' tmp{i}];
end
else currentparam = tmp; % a cell array of param values and time is
supplied %
end

else % separate time and param values are supplied %
time = varargin{l};
tmp = varargin{2};
if size(time,2)~=size(tmp,2)
time = time*ones(1l,size(tmp,2));
end
if ~iscell(tmp)
for i = l:size(tmp,2)
currentparam{i} = [time(:,1) tmp(:,1i)];
end
elseif iscell(tmp) && size(tmp{l},2)==1
for i = l:size(tmp,2)

currentparam{i} = [time(:,1i) tmp{i}];
end
else error('prognostictoolbox:runGPM:invaliddatatype', 'Invalid
Time/Parameter Entry');

end
end

yt = model.ytransform;

if ~model.bayesian
for i = l:size(currentparam,?2)
time = currentparam{i}(:,1);
X = zeros(size(time,l),size(model.fit,2));
for k = l:size(model.fit,2)
x(:,k) = model.fit{k}(time);

end
y = yt(currentparam{i}(:,2));
b = inv(x'*x)*(x'*y);

if size(model.threshold,2)>1
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thresh = yt(model.threshold.mean); %apply y transform to

threshold value %
else thresh = yt(model.threshold);
end
fcn = fsum(model.fit,b);
try

[TOF (i) fval flag] = fzero(@(x)fcn(x)-thresh,[time(end)

lel0],options);
RUL(i) = TOF(i) - time(end);
catch

fprintf('Model fit is not adequate to make RUL estimation. More

data is needed\n')
RUL = NaN;
return
end

if flag<0 % value could not be found where param crosses threshold %
fprintf('Model fit is not adequate to make RUL estimation. More

data is needed\n')
return
end
end
else
nvar = model.noisevar;
prior = model.bayesianprior;
for i l:size(currentparam,2)
for j =

model.updateinterval:model.updateinterval:size(currentparam{i}, 1)

p = currentparam{i}(l:3j,:);
% parameter

y = [yt(p(:,2));prior(l,:)"'];
time = p(:,1);

X = zeros(size(time,l)+size(prior,2),size(model.fit,2));

for k = l:size(model.fit,2)

x(l:length(time),k) = model.fit{k}(time);

end
x(length(time)+l:end,:) = eye(size(prior,2));
invv = diag([ones(1l,size(p,1l))*nvar prior(2,:).%2]."%-1);

value %

% posterior parameter estimates %
b = inv(x'*invV#*x)*(x'*invV+y);
% sd of posterior

s = sqrt((l./prior(2,:)."2+j/nvar).”-1);

% posterior becomes new prior %
prior = [b';s];
end
if size(model.threshold,2)>1

thresh = yt(model.threshold(1l)); %apply y transform to threshold

else thresh = yt(model.threshold);
end

fcn = fsum(model.fit,b);

try
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[TOF(i) fval flag] = fzero(@(x)fcn(x)-thresh,[time(end)
lel0],options);
if flag<0 % value could not be found where param crosses threshold %
fprintf('Model fit is not adequate to make RUL estimation. More
data is needed\n')
return
end
catch TOF(i) = NaN;
end
RUL(i) = TOF(i) - time(end);
model.bayesianprior = prior;
end
end

%%
function fcn = fsum(fit,b)

% combine the list of x function handles and the estimated coefficients into
% one function

b num2str(b);

for i = 1l:size(fit,2)
% convert the function to a string %
f{i} = char(fit{i});
£{i}(1:4) = [1;

end

y =1[1;

for j = 1l:size(f,2)
if j~=size(f,2)

y = strcat(y,b(J,:), " *",£{3}, ' +');
else y = strcat(y,b(J,:), ' *",£{3});
end

end

fen = eval(['@(x)" y1);
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C.6 Parameter Identification
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function [param fval] = optparam(input, varargin)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

OPTPARAM Identify a near-optimal prognostic parameter

This function uses Genetic Algorithms and parameter suitability
metrics to identify a near-optimal prognostic parameter from
several data sources.

param = OPTPARAM (inputs, 'flag', value, ...) identifies a
near-optimal prognostic parameter from the available data in the
cell array inputs. The function uses genetic algorithms to
optimize the weights in a linear combination of the available
signal inputs. Function returns a structure, param, which includes
the resulting weights and all information needed to obtain the
parameter from a new data run using function PARAMGEN. Flag/value
pairs may be set to any of the

following:

'inputs' ('all') Determines how many of the inputs should be
considered by the GA. Can be set to 'all',
indicating that all should be used, or
'subset', indicating that a subset of
useful parameters should be used.

'cutoff' (1.5) Cutoff value for determining which input

parameters are useful when choosing a
subset of inputs for optimization.

'fitness' (sum of M,P,T) Identifies the fitness function to be
used, input as @fitness. fitness(w,inputs)
must be a matlab m-file which takes only
the candidate solution from the GA and the
cell array of possible inputs to determine
the fitness of a candidate solution.

'fitweights' ([1 1 1]) A 1x3 row vector of weights which gives
the weight of each of the three suitability
metrics in determining the fitness. The
first entry corresponds to monotonicity,
the second to prognosability, and the third
to trendability.

'initpop' (I[1) Any candidate weightings that the GA should
consider. If visual inspection or expert
analysis has lead to any suitable
parameters, these can be included in the GA
to allow it to explicitly consider them in
the optimization. They should be included
as an n¥Xm matrix where n is the number of
possible prognostic parameters to be
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% included and m is the number of candidate
% inputs to the parameter. Each row should
% contain the weights associated with one
% possible parameter.
% 'group' (one group) Multiple prognostic parameters may be
% optimized to compare groups. Associated
% value must be a cell array of matrices
% where each matrix indicates the runs
% included in a specific group. Groups may be
% overlapping. Output in this case will be a
% structure array where the ith entry
% corresponds to the optimum parameter for
% the ith group.
% 'smoothing' (false) May be set to 'true' or 'false', indicates
% whether the resulting parameter should be
% smoothed prior to final model development.
%
% SEE ALSO: PARAMGEN
% Jamie Coble
% The University of Tennessee, Knoxville
% Nuclear Engineering Department
% Last Update: 9/27/2009
% Copyright (c)
flags = [1];
if ~isempty(varargin)
[flags values] = getfvp(varargin);
end

%% initialize parameter structure

param = struct('weights',[], 'inputs',[l:size(input{l},2)], cutoff',1.5,...
'fitness',@paramfit, 'fitweights',ones(1,3), 'initpop',[1,...
'smoothing',false);

if any(strcmpi(' fitweights',flags))
param.fitweights = values{strcmpi('fitweights',flags)};
end

groups = [];

for i = l:length(flags)
if strcmpi(flags{i}, 'inputs')
if strcmpi(values{i}, 'subset')
if any(strcmpi( 'cutoff',flags))
cutoff = values{strcmpi( 'cutoff',flags)};
else cutoff = 1.5;
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end
sens = [];
w = param.fitweights;
for k = l:size(input{1l},2)
for j = l:length(input)
temp{j} = input{j}(:,k);
end
[m p t] = ppmetrics(temp);
if w*[m p t]' >= cutoff
sens = [sens k];
end
end
param.inputs = sens;
param.cutoff = cutoff;
elseif strcmpi(values{i},'all’)
else param.inputs = values{i};
end
elseif strcmpi(flags{i}, fitness')
param.fitness = values{i};
elseif strcmpi(flags{i}, 'smoothing')
param.smoothing = values{i};
elseif strcmpi(flags{i}, 'initpop')
param.initpop = values{i};
elseif strcmpi(flags{i}, 'cutoff')
param.cutoff = values{i};
elseif strcmpi(flags{i}, 'group')
groups = values{i};
else error('prognostictoolbox:optparam:invalidflag',...
'Invalid Parameter Optimization Flag');
end
end

if ~isempty(groups)
param.group = [];
p = param;
for i = l:length(groups)
param(i) = p;
param(i).group = groups{i};
end
else groups = l:length(input);
end
%% optimize parameter weights using GA

for j = l:length(param)
inputs = input(groups{j});

options = gaoptimset('plotfcns', {@gaplotbestf},...
'"InitialPopulation',param(j).initpop, 'PopulationSize',100);
for i = l:length(inputs)
inputs{i} = inputs{i}(:,param(j).inputs);
end

param(j).fitness =
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@(x)param(j).fitness(x,inputs,param(j).fitweights,param(j).smoothing);
[param(j) .weights fval flag] =

ga(param(j).fitness,length(param(j).inputs),options);
end
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function fitness = paramfit(x,inputs,w,s)

PARAMFIT Function to determine fitness of candidate prognostic parameter
This function determines the fitness of a candidate prognostic
parameter as the sum of monotonicity, prognosability, and
trendability

fitness = PARAMFIT (weights,inputs) calculates the fitness of a
linear combination of inputs, weighted according to the row vector
weight, as the sum of the parameter suitability metrics
monotonicity, prognosability, and trendability.

fitness = PARAMFIT (weights,inputs,suitabilityweights) calculates
the fitness of a linear combination of inputs, weighted according
to the row vector weight, as the weighted sum of the parameter
suitability metrics monotonicity, prognosability, and trendability,
where suitabilityweights is a 1x3 row vector with the weight of
monotonicity in the first entry, prognosability in the second, and
trendability in the third.

o0 d° A A O I A A O I I O I I I O I I o o°

SEE ALSO OPTPARAM PARAMGEN

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 9/27/2009

Copyright (c)

o0 d° d° o0 o

% set default suitability weights if necessary %
if nargin<3

w = ones(1,3);
end

% calculate the candidate parameter for each run in inputs

param cell(size(inputs));
for i l:1length(inputs)
param{i} = inputs{i}*x';
if s
param{i} = expfilt(param{i});
end
end

[m p t] ppmetrics(param) ;

fitness = -w*[m p t]';
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function [monotonicity prognosability trendability] = ppmetrics(params)

PPMETRICS characterizes the appropriateness of a prognostic parameter
based on three metrics

[monotonicity prognosability trendability] = PPMETRICS (params)
evaluates the population of prognostic parameters contained in the
cell array params for three metrics of adequacy

Monotonicity measures the general increasing or decreasing
trend of the parameter. Because the assumption is made that
systems do not self heal and no corrective action is taken,
prognostic parameters are assumed to be monotonic. This
assumption may not be valid for some systems such as batteries

systems which experience some outside intervention to improve
the condition.

Prognosability is a measure of the variance of the failure
values for a population of parameters.

Trendability characterizes how well a population of parameters
can be fit by the same functional form. It measures the
similarity of the general trend of the parameter for a

%
%
%
%
%
%
%
%
%
%
%
%
% which do exhibit some self healing during periods of rest, or
%
%
%
%
%
%
%
%
%
% population of systems.

%

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 10/21/2008

Copyright (c)

o0 d° d° o° o°

%% Remove time variable if necessary

for i = l:length(params)
if size(params{i},2) =
params{i}(:,1) = [
end
end

2

1

%% Smooth Prognostic Parameters

sparam = cell(size(params));
for i = 1l:length(params)
if size(params{i},1)>100
sparam{i} = medfiltl(params{i},10);
sparam{i}([1:5 end-5:end],:) = []; % remove faulty smoothed values
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due to zero padding %
else sparam{i} = params{i};
end

end

%% Monotonicity

m = 30;
mpos = NaN(1l,length(sparam)
mneg = NaN(1l,length(sparam)
for i = l:length(sparam)
if size(sparam{i},1l)>2*m
n = floor(size(sparam{i},1l)/m);
else n = 3; m = (size(sparam{i},1)./3);
end
s = zeros(l,n);
for j = 1:n
b = regress(sparam{i} (floor((j-1)*m+1l):round(j*m)),[floor((Jj-
1)*m+l):round(j*m);ones(size(floor((j-1)*m+l):round(j*m)))]"');

)i
)i

s(j) = b(1);
end
mpos (i) = sum(s>0)/(n);
mneg(i) = sum(s<0)/(n);

end
monotonicity = nanmean(abs(mpos-mnegqg));

%% Prognosability

failval = NaN(1l,length(params));
startval = NaN(1l,length(params));
for i = l:length(params)
failval(i) = params{i}(end);
startval(i) = params{i}(1l);
end

prognosability = exp(-std(failval)/mean(abs(startval-failval)));

%% Trendability

% Re-sample data into %life instead of observations %
p = NaN(100,length(sparam));
for i = l:length(sparam)

p(:,1i) = resample(sparam{i},100,length(sparam{i}));
end

% Trendability is the minimum absolute correlation %

cc = corrcoef(p);
trendability = min(min(abs(cc)));
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function param = paramgen(param struct,inputs,time)

PARAMGEN Generate prognostic parameters according to optimized options
This function generates a population of prognostic parameters
according to the options saved in the structure param struct

progparam = PARAMGEN (param_struct,inputs) creates a population of
prognostic parameters using the options saved in param struct and
the candidate inputs in the cell array inputs. OPTPARAM() can be
used to generate the parameter structure.

progparam = PARAMGEN (param_struct,inputs,time) creates a population
of prognostic parameters which includes the time variable for each
case in the first column and the prognostic parameter in the
second. Both inputs and time should be cell arrays where the
number of observations (rows) in each cell of inputs should be
equal to the corresponding cell of time.

PARAMGEN calls also produce a plot of the population of prognostic
parameters.

o0 P A A 0 I A A O I I A O I I o I Jd° o o°

SEE ALSO OPTPARAM

Jamie Coble

The University of Tennessee, Knoxville
Nuclear Engineering Department

Last Update: 3/16/2010

Copyright (c)

o0 d° d° o0 oP°

sens = param_struct.inputs;
smooth = param struct.smoothing;
weights = param_struct.weights;

if exist param_ struct.groups
inputs = inputs(groups);
end

param = cell(size(inputs));
for i = l:length(inputs)
param{i} = inputs{i}(:,sens)*weights’;
if smooth
param{i} = expfilt(param{i});

end
end
if nargin == 3
for i = 1l:length(param)
param{i} = [time{i} param{i}];
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end
else time{i} = (l:length(param{l}))';
end

figure

hold on

for i = l:size(param,2)
plot(time{i},param{i}(:,end), 'b');
endval(i) = param{i}(end,end);
endtime(i) = time{i}(end);

end

plot(endtime,endval, 'r*")

xlabel( 'Time (cycles)')

ylabel('Prognostic Parameter')

box
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C.7 Data Preprocessing
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function [data map] = MCdata(oc,varargin)

MCDATA Convert discrete data points into operating classes for MC model
This function converts operating condition data into data needed
for Markov Chain Models

[newoperatingconditions map] = MCDATA (operatingconditions) converts
the operating condition progressions to failure contained in the
cell array operatingconditions into conditions numbered 1-n (no
ordinal relation is implied by the new numbers). The progressions
in the cell array operatingconditions may be of size nxm where n is
the number of observations in one history and m is the number of
variables which fully define the operating condition. These values
need to be discrete (or discretized by some outside method) to
apply this function correctly. The output map is a matrix which
indicates the relationship between the original operating
conditions (of size 1xn) to an operating condition class. The first
row in map defines the first operating condition, the second row
the second operating condition, and so on.

[newoperatingconditions map] = MCDATA (operatingconditions, 'flag',
value) separates the operating conditions progressions contained in
the cell array operatingconditions into MC appropriate conditions.
The 'flag'/value pairs may be set to any of the following:

'tol' (0.10) The noise tolerance for separating operating
conditions
'map' (determined) The map for moving from measured operating

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% conditions to the MC numbered conditions where
% the first row in map defines the first

% operating condition, the second row in map the
% second operating condition, and so on.

%

%

%

See also INITMC RUNMC

% Jamie Coble
% The University of Tennessee, Knoxville
% Nuclear Engineering Department
% Last Update: 9/26/2009
% Copyright (c)
flags = [];
if ~isempty(varargin)
[flags values] = getfvp(varargin);
end
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% Set defaults and get values for tolerance and map, if provided

tol = 0.10;
map = [];

for i = l:length(flags)
if strcmpi(flags{i}, 'tol")
tol = values{i};
elseif strcmpi(flags{i}, 'map')
map = values{i};
end
end

% Identify the data clusters accounting for noise of tol

cond = [];
for i = l:length(oc)

cond = [cond; oc{i}];
end

cond = sort(cond);
unique_cond = [cond(diff(cond)>tol);cond(end)];

% Define a map if one is not supplied %
if isempty(map)

map = sortrows(unique_cond);
end

data = cell(size(oc));

for i = l:length(oc)
opcon = oc{i};
data{i} = NaN(size(opcon,1l),1);
for j = l:length(opcon)
data{i}(j) = findvec(map,opcon(j,:),tol);
end
end

$% Find the vector b inside the matrix a
function ind = findvec(a,b,tol)

b = repmat(b,size(a,l),1);
d sum(abs(b-a),2);
ind = find(d <= size(a,2)*tol);
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function [m s k sk] = timestats2(data,Nobs,varargin)

% TIMESTATS2 Calculate Time-Based Statistics for Multivariate Data

% This function calculates basic time statistics for multivariate

% data.

%

% [Mean StdDev Kurtosis Skewness] = TIMESTATS2 (data,N) calculates the
% appropriate statistics across blocks of time of length N. The

% requested time statistics are also plotted.

%

% [Mean StdDev Kurt Skew] = TIMESTATS2 (data,N,'flag',value

% calculates the appropriate time statistics using the user-supplied
% properties specified in the 'flag'/value pairs. Accepted pairs are:
% 'plot' (True) Logical indicator to display output plot.
% 'varnames' (numbers) Cell containing variable names in

% strings, for plotting purposes.

%

% Jamie Coble

% The University of Tennessee, Knoxville

% Nuclear Engineering Department

% Last Update: 3/12/2010

% Copyright (c)

% Based on timestats() by Michael Sharp

%% set defaults
warning('off', 'MATLAB:divideByZero')

if isempty(Nobs)

error( 'prognostictoolbox:timestats2:missinginput', 'Missing Block Size');

end
N = floor(size(data,1l)/Nobs);

ploton = 1;
varnames = cell(1l,size(data,2));
for i = l:size(data,2)

varnames{i} = strcat('Var',num2str(i));
end

flags = [];
if ~isempty(varargin)

[flags values] = getfvp(varargin);
end

for i = l:length(flags)
if strcmpi(flags{i}, 'plot")
ploton = values{i};
elseif strcmpi(flags{i}, 'varnames')
varnames = values{i};
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end

else error('prognostictoolbox:timestats2:invalidflag', 'Invalid Flag')

end

%% Calculate appropriate statistics

~ 0
(]

end

= NaN(N,size(data,2)

NaN(N,size(data,?2)

)i
)i
= NaN(N,size(data,2));
))i

NaN(N,size(data,?2

i = 1:N

m(i,:) = mean(data(Nobs*(i-1)+1:Nobs*i,:));
s(i,:) = std(data(Nobs*(i-1)+1:Nobs*i,:));
k(i,:) = kurtosis(data(Nobs*(i-1)+1:Nobs*i,:))

7
sk(i,:) = skewness(data(Nobs*(i-1)+1:Nobs*i,:));

%% Plot output

if ploton

end

if N<50
linetype = '-o'
else linetype = '-'
end
if nargout == 0
nplots = 4;
else nplots = nargout;
end
res = cell(1l,4); res{l} = m; res{2} = s
ylabs = {'Mean', 'Std Dev', 'Kurt', 'Skew'
figure; hold on
for i = l:nplots
subplot(nplots,1,1i)
plot(res{i},linetype)
ylabel(ylabs{i})
end
xlabel([ 'Time Blocks (',num2str(Nobs),' obs per block)'])
subplot(nplots,1l,1);legend(varnames, 'location', 'bestoutside')
title('Data Statistics Over Time')

~e ~e

res{3} = k; res{4} = sk;

.
14
.
4
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Appendix D: Process and Equipment Prognostics Toolbox Demo
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The following code illustrates the use of the PEP toolbox in conjunction with the PEM toolbox for a full
suite of monitoring, fault detection and prognostic routines. In this example, the algorithms are applied
to the PHM challenge problem data described previously. Appropriate results are included within the
code where appropriate to demonstrate the output of the PEP toolbox. Textual results are given in
italics and plots are inserted following their generating code.

5555555555555 55555555555%555555%555%55%55555%5%555%5%5%5%%%59%5%5%%5%5%5%%%
PHM Software Demo

Jamie Coble
PHM Conference

o0 d° o° d° o0 oP
o° d° d° od° o° oP°

5555555555555 5555555555555 5555%%%%%5%5%5%5%5%5%5%5%5%5%5%%%

%%
clear

% Script to run through model development and optimization, system %
% monitoring, fault detection, and prognostic model development with the %
% PEM and PEP Toolboxes %

% System will be developed for the 2008 PHM Challenge Data, available at %
% http://ti.arc.nasa.gov/project/prognostic-data-repository %

load PHMchalldata

%% Divide Data

% Assume first 15% of each data run is fault free for monitoring system %
% development and optimization. %

train [1;
for i 1:260

train = [train;trn{i}(l:floor(0.15*size(trn{i},1)),:)]1;
end

% Divide "fault free" data into training, test, and validation data %

[x1 x2 x3 x4 x5 x6 x7 x8] = vensample(train,8);
training = [x1; x3; x5; x7];

testing = [x2;x6];

validation = [x4;x8];

%% Choose Monitoring Model Inputs

% Model inputs are chosen based on linear correlations between available %
% variables. Correlations with magnitude less than 0.3 are considered %
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% unuseful; those with magnitude between 0.3 and 0.7 may have some %

% predictive power, and those with magnitude greater than 0.7 are %
% considered good predictors. %
% The PEM function AAGROUP() divides data into groups for auto-associative$%
% model development. It uses a cut-off of 0.7 to identify appropriate %
% groups from the data. This function gives us two groups, as shown. %
% Notice that some variables are members of both groups. %

Groups = aagroup(training)
Groups{1l}

Groups{2}

gcplot(training, Groups)

% We can make two models to give the best predictive performance over all %
$ variables. The first model will contain 21 variables, and the second %
% model will contain 8 wvariables. %

train groupl = training(:,Groups{l});
train group2 = training(:,Groups{2});
test_groupl = testing(:,Groups{l});
test _group2 = testing(:,Groups{2});
val_groupl validation(:,Groups{l})
val _group2 = validation(:,Groups{2})

.
4
.
4

$ Model 1 %

modell = initmodel( 'aakr',train groupl, 'nmem',500);

modell =

setmsa(modell, 'plotresults',0, 'fdetmethod', 'sprtn', 'variablenames',num2cell (G
roups{1l}));

modell.architecture.bandwidth

modell = optmodel(modell,test groupl, 'error', 'bandwidth',[0.5 0.75 1.0 1.5]);
modell.architecture.bandwidth

modell = modchar(modell,val groupl);

modell.attributes

% Model 2 %

model2 = initmodel( 'aakr',train group2, 'nmem',500);

model2 =

setmsa(model2, 'plotresults',0, 'fdetmethod', 'sprtn', 'variablenames',num2cell (G
roups{2}));

model2.architecture.bandwidth

model2 = optmodel(model2,test group2, 'error', 'bandwidth',[0.5 0.75 1.0 1.5]);
model2.architecture.bandwidth

model2 = modchar(model2,val_ group2);

model2.attributes

%% Monitoring and Fault Detection
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% Now we can use our models for system monitoring,

$ fault detection.

% Extract SPRT attributes for use in fault detection

ml
vl
tl

m2
v2
t2

% Calculate model predictions,

modell.attributes.error.mean;
modell.attributes.error.std.”"2;
modell.attributes.sprttolerance;

model2.attributes.error.mean;
model2.attributes.error.std.”"2;
model2.attributes.sprttolerance;

$ model

tic

for i = 1:260
$ Model 1 %

predl{i} = runmodel(modell,trn{i}(:,Groups{l}));
resl{i} = predl{i} - trn{i}(:,Groups{l});
Fhypl{i} = sprtn(ml,vl,resl{i},0.01,0.1,tl);

% Model 2 %

end

pred2{i} = runmodel(model2,trn{i} (:,Groups{2}));
res2{i} = pred2{i} - trn{i} (:,Groups{2});
Fhyp2{i} = sprtn(m2,v2,res2{i},0.01,0.1,t2);

% Let's look at the results for run #2
for j = 1:21

end

figure
subplot(2,1,1); plot(Fhypl{2}(:,3), o");
ylabel('Fault Hyp');

title({['Variable ' num2str(modell.attributes.variablenames(j))],.

"SPRT Fault Hypotheses : Model 1'});
axis([-inf inf -0.05 1.05])
subplot(2,1,2);plot(resl{2}(:,3));
xlabel('Time (cycles)');
ylabel( 'Error');
title('Residuals : Model 1'");

residuals, and fault hypotheses for each

residual generation and$%

%
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Yariable 18
SPRT Fault Hypotheses : Model 1
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%% Prognostic Models - Type I Model
Type I models are traditional time-to-failure models.

distribution, which can model burn in, random failure,

o0 d° o° o° oP°

this type of model.

TOF = zeros(length(trn),1);
for i = l:length(trn)

TOF(i) = length(trn{i});
end

typel initprog('typeI', TOF)

typel

type: 'TypeI'
distribution: 'weibull'
parameters: [1x1l struct]
data: [1x1 struct]

typel.parameters

1
250 300

The most common

distribution for developing this kind of model is the Weibull

%
%

and wear out. The$%

Time of Failure for each failed case is the only data needed to develop %

%
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ans =

beta: 4.3883
theta: 225.6644

% The RUL of a new system is estimated based only on the amount of time
% that system has been running.

current_ time = zeros(length(tst),1l);
for i = l:length(tst)
current time(i) = length(tst{i});
end
RUL_typel = runprog(typel,current time);

MAPE_ typel = mean(abs(RUL - RUL typeI)./RUL*100);

figure

subplot(2,1,1);hold on; plot(RUL, 'r+'); plot(RUL_typeI, 'bo');
hold off

legend( 'Actual’', 'Estimated’)

title('Type I RUL Estimates')

ylabel( 'RUL (cycles)')

axis([0 259 -inf inf])

subplot(2,1,2);hold on; plot(RUL-RUL_typeI, 'bo');
plot(1:259,zeros(1,259), 'r--"); hold off

xlabel('Run Number')

ylabel( 'RUL (cycles)')

title([ 'Type I RUL Estimation Error : MAPE = ' num2str(MAPE_typeI)])
axis([0 259 -inf inf])
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%% Prognostic Models - Type II Model

Type ITI models consider the past and expected future operating %
conditions of a system when making prognostic estimates. One example of%
a Type II algorithm is the Markov Chain model. This model uses a %
transition probability matrix to simulate possible future operating
conditions and relates these conditions to a degradation measure. The
PHM Challenge Data has six distinct operating condtions, so it may be
well suited to this type of model.

o0 o0 d° A o0 o° o
o® o° d° o°

o°
oe

Format historic operation condition progressions to be numbered 1 - 6.
These numbers have no ordinal relationship.

o°
o°

old oc = cell(size(trn));
for i = 1l:length(trn)

old oc{i} = trn{i}(:,1);
end

[new_oc map] = MCdata(old_oc);

typeII initprog('MC',new_oc, 'RULcon',0.5)

typeIl
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type: 'MC'
Q: [6x6 double]
u: [0.1577 0.1346 0.1231 0.1885 0.1385 0.2577]
f: @(b,t)t*b
b: [6x]1 double]

threshold: 100
npop: 1000
RULcon: 0.5000

typelI.Q

ans =
0.1474 0.1520 0.1512 0.1521 0.1430 0.2544
0.1440 0.1508 0.1502 0.1472 0.1524 0.2554

0.1455 0.1466 0.1517 0.1468 0.1588 0.2506
0.1543 0.1568 0.1479 0.1507 0.1415 0.2488
0.1502 0.1551 0.1542 0.1465 0.1511 0.2431
0.1536 0.1460 0.1518 0.1488 0.1500 0.2498

typeII.b
ans =

0.6506
0.3333
0.4624
0.5269
0.7096
0.2334

% Format test path operating conditions to the MC classes 1 - 6 using the %
% map identified previously. %

test_oc = cell(1,259);
for i = 1:259
test_oc{i} = tst{i}(:,1);
end
test_oc = MCdata(test_oc, 'map',map);

$ Estimate the 50% RUL for each test run.
RUL typeII = NaN(length(tst),1);
for i = l:length(tst)
RUL typelII(i) = runprog(typelI,test _oc{i});
end

oe

MAPE_typeII = mean(abs(RUL - RUL_typeII)./RUL*100);

figure
subplot(2,1,1);hold on; plot(RUL, 'r+'); plot(RUL_typeII, 'bo');
hold off
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legend( 'Actual’', 'Estimated’)
title( 'Type II RUL Estimates')
ylabel('RUL (cycles)')

axis ([0 259 -inf inf])

subplot(2,1,2);hold on; plot(RUL-RUL_typeII, 'bo');

plot(1:259,zeros(1,259), 'r--");
xlabel('Run Number')
ylabel('RUL (cycles)')

title([ 'Type II RUL Estimation Error

hold off

MAPE

num2str (MAPE_typeII)])

axis ([0 259 -inf inf])
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% We see that the results of this model are not very good. If we look back%
% at the transition probability matrix and linear fit, we see that we do %
% not get much extra information from the markov chain formalism. The %
% probability of transitioning between any two states is nearly equivalent$
% and the total time spent in any one operating condition does not seem to%
% give us much information about the degradation level. %
%% Prognostic Models - Type III Model

% Type III models consider the actual condition of the system, either %
% measured or inferred from other measurements. These condition %
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% measurements are fit to a parametric model which is then extrapolated to%
% a pre-defined critical failure threshold. %
% The first step is to identify an appropriate prognostic parameter. %
% Monitoring model residuals are a natural choice for prognostic %
% parameters because they naturally characterize how "far" the system is %
% operating from normal behavior. For this example, we are looking for the%
% optimal linear combination of the 29 residuals (21 from modell and 8 %
% from model2) based on a sum of the three suitability metrics - %
% monotonicity, prognosability, and monotonicity. %

inputs = cell(size(trn));
for i = 1l:length(trn)

inputs{i} = [resl{i} res2{i}];

end

% For this demonstration, we will develop two prognostic parameters: the %

% first will include all available residuals %

paraml_ga = optparam(inputs, 'inputs','all')

parl = paramgen(paraml_ga,inputs);

[ml pl tl] = ppmetrics(parl)

ml =
0.6415

pl =
0.8411

tl =
0.8140

figure; hold on

for i = 1l:length(parl)
plot(parl{i}, 'b")
endtime(i) = length(parl{i});
endval(i) = parl{i}(end);

end

plot(endtime,endval, 'r*")

xlabel('time (cycles)')

ylabel('Param')

title('First GA Parameter')
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First G& Parameter

30 T T T

Param

=70 1

1 1
0 50 100 150

% The second parameter includes a subset of the residuals.

1
200
time {(cycles)

1 1
250 300

Residuals are

% chosen for inclusion in the GA by calculating the fitness of each

%
%

% individual residual and including only those with total suitability over$%

%$ 2.0

param2_ga = optparam(inputs, 'inputs’,

par2 = paramgen(param2_ga,inputs);
[m2 p2 t2] = ppmetrics(par2)

m2 =
0.7014

p2 =
0.8789

t2 =
0.8956

figure; hold on

for i = l:length(par2)
plot(par2{i},'b
endtime(i) = length(par2{i});
endval(i) = par2{i}(end);

'subset’,

'cutoff’

;2.0)

%
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end
plot(endtime,endval, 'r*")
xlabel('time (cycles)')
ylabel( 'Param')
title('Second GA Parameter')

- Second GA Parameter

3 '|I4| '

Param

b

KL

1

- 3 U 1 1 1 1 1
0 50 100 150 200 250
time {(cycles)

% A prognostic model is developed for each of the two parameters
typeIII 1 = initprog( 'gpm',parl, 'fit',{@(x)x."2 @(x)x @(x)1})
typeIII 2 = initprog( 'gpm',par2, 'fit',{@(x)x."2 @(x)x @(x)1})

% Monitoring system residuals for the test runs are obtained from the

% previously developed models

resl _tst = cell(size(tst));

res2_tst = cell(size(tst));

inputs_tst = cell(size(tst));

for i = l:length(tst)
resl tst{i} = runmodel(modell,tst{i}(:,groups{l
res2 _tst{i} = runmodel(model2,tst{i}(:,groups{2
inputs_tst{i} = [resl tst{i} res2 tst{i}];

end

% Finally, the models are used to estimate the RUL of each test run with

% each model

)
)

1
350

400
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RUL_typeIII 1 = zeros(length(tst),1l);
tst _parl = paramgen(paraml ga,inputs_tst);
RUL_typeIII 2 = zeros(length(tst),1l);
tst _par2 = paramgen(param2_ga,inputs_tst);
for i = l:length(tst)
RUL_typeIII 1(i) = runprog(typeIII 1,tst{i});

RUL_typeIII 2(i) = runprog(typeIII 2,tst par2{i});

end

MAPE_ typeIII 1 mean(abs (RUL - RUL typeIII 1)./RUL*1

MAPE typeIII 2 = mean(abs(RUL - RUL typeIII 2)./RUL*1
figure

subplot(2,1,1);hold on; plot(RUL, 'r+'); plot(RUL_type
hold off

legend( 'Actual', 'Estimated')

title( 'Type III, Model 1 RUL Estimates')
ylabel('RUL (cycles)')

axis ([0 259 -inf inf])

subplot(2,1,2);hold on; plot(RUL-RUL_typeIII 2, 'bo');
plot(1:259,zeros(1,259), 'r--"); hold off
xlabel('Run Number')
ylabel( 'RUL (cycles)')
MAPE = ' num2str(MAPE_typeIII 1)])

title(['Type III RUL Estimation Error
axis ([0 259 -inf inf])

Type lll, Model 1 RUL Estimates

14

00);
00);

III_1,'bo');

T o T T o 1 Fa L)
200 o S + ey 4|+ Actual  H
R ooo+ @ Fh Lo, 98 & o Estimated
o 150 F+ + P # @4y ot +
o o 5&cb $> 2 on @° © e @ Fo @
8400?9 a, B oot +§3+°?+
()
& -++ 501t o B I% o O
= o +°‘%> °Q 4o 270 %@ﬁ% & 4a
+
0575 9 % (18 P i+ |
o) = o
] ] o
0 100 150 200 250
Type Il RUL Estimation Error : MAPE = 68.4944
40 F T T 5 L ] T
o o o
@, ? 0% o o o0 S Q@f
20 o o o OO o 0 o0 o& -
@ ° "o wo .%% L P oo &
=1 gé&%rfk£5€;25¥§? e @pzsxékr O, 0% %? O 00%300 X
RS Sarres o @ & oO o o ]
5 -20 -%C% o&%) ? (s} ¢700 OOOOO%%{D ® o & o
i © 0® © o ° % o o 0® oy oo % oo @
-40 F o® © o © 6 © -
1 1 o] 1 1 1
0 S0 100 150 200 250
Run Number

203



figure
subplot(2,1,1);hold on;
hold off

legend( 'Actual’,
title('Type III,
ylabel( 'RUL (cycles)')
axis ([0 259 -inf inf])
subplot(2,1,2);hold on;
plot(1:259,zeros(1,259),
xlabel('Run Number')
ylabel( 'RUL (cycles)')

plot (RUL,

'Estimated')
Model 2 RUL Estimates')

plot (RUL-RUL typeIII 1,
hold off

Te=0)i

"r+');

title(['Type III RUL Estimation Error

axis ([0 259 -inf inf])

plot (RUL_typeIII 2, 'bo');

'bo");

MAPE =

Type lll, Model 2 RUL Estimates

num2str (MAPE_typeIII 2)])
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