970 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Fortified Anonymous Communication Protocol for Location Privacy in WSN: A Modular Approach

    Get PDF
    Wireless sensor network (WSN) consists of many hosts called sensors. These sensors can sense a phenomenon (motion, temperature, humidity, average, max, min, etc.) and represent what they sense in a form of data. There are many applications for WSNs including object tracking and monitoring where in most of the cases these objects need protection. In these applications, data privacy itself might not be as important as the privacy of source location. In addition to the source location privacy, sink location privacy should also be provided. Providing an efficient end-to-end privacy solution would be a challenging task to achieve due to the open nature of the WSN. The key schemes needed for end-to-end location privacy are anonymity, observability, capture likelihood, and safety period. We extend this work to allow for countermeasures against multi-local and global adversaries. We present a network model protected against a sophisticated threat model: passive /active and local/multi-local/global attacks. This work provides a solution for end-to-end anonymity and location privacy as well. We will introduce a framework called fortified anonymous communication (FAC) protocol for WSN.http://dx.doi.org/10.3390/s15030582

    Algebraic Watchdog: Mitigating Misbehavior in Wireless Network Coding

    Get PDF
    We propose a secure scheme for wireless network coding, called the algebraic watchdog. By enabling nodes to detect malicious behaviors probabilistically and use overheard messages to police their downstream neighbors locally, the algebraic watchdog delivers a secure global self-checking network. Unlike traditional Byzantine detection protocols which are receiver-based, this protocol gives the senders an active role in checking the node downstream. The key idea is inspired by Marti et al.'s watchdog-pathrater, which attempts to detect and mitigate the effects of routing misbehavior. As an initial building block of a such system, we first focus on a two-hop network. We present a graphical model to understand the inference process nodes execute to police their downstream neighbors; as well as to compute, analyze, and approximate the probabilities of misdetection and false detection. In addition, we present an algebraic analysis of the performance using an hypothesis testing framework that provides exact formulae for probabilities of false detection and misdetection. We then extend the algebraic watchdog to a more general network setting, and propose a protocol in which we can establish trust in coded systems in a distributed manner. We develop a graphical model to detect the presence of an adversarial node downstream within a general multi-hop network. The structure of the graphical model (a trellis) lends itself to well-known algorithms, such as the Viterbi algorithm, which can compute the probabilities of misdetection and false detection. We show analytically that as long as the min-cut is not dominated by the Byzantine adversaries, upstream nodes can monitor downstream neighbors and allow reliable communication with certain probability. Finally, we present simulation results that support our analysis.Comment: 10 pages, 10 figures, Submitted to IEEE Journal on Selected Areas in Communications (JSAC) "Advances in Military Networking and Communications

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    An Enhanced Communication Protocol for Location Privacy in WSN

    Get PDF
    Wireless sensor network (WSN) is built of many sensor nodes. The sensors can sense a phenomenon, which will be represented in a form of data and sent to an aggregator for further processing. WSN is used in many applications, such as object tracking and security monitoring. The objects in many situations need physical and location protection. In addition to the source location privacy, sink location privacy should be provided. Providing an efficient location privacy solution would be challenging due to the open nature of the WSN. Anonymity is a key solution for location privacy. We present a network model that is protected against local, multilocal, and global adversaries that can launch sophisticated passive and active attacks against the WSN.http://dx.doi.org/10.1155/2015/69709

    Cooperative strategies for pairwise secure communication channels in sensor networks

    Get PDF
    Establishing secure communication channels in sensor networks is made especially difficult because of low power resources, hostile environments, and wireless communication. The power requirements of traditional cryptographic methods create the need for alternative strategies for secure communication in sensor networks. This thesis explores key distribution techniques in sensor networks. Specifically, we study in depth one method that enables sensors to establish pairwise secure communication channels. This strategy relies on a cooperative set of peer sensors to construct a unique key between two sensors. We built a unique network simulator to test secure communication parameters in a typical deployment scenario. This research tests the strategy by which the cooperative set of sensors is chosen. The results demonstrate that a strategy favoring neighbor nodes consumes significantly less energy than other alternatives at the expense of vulnerability to geographically localized attacks
    • …
    corecore