1,137 research outputs found

    Natural Language Processing Applications in Business

    Get PDF
    Increasing dependency of humans on computer-assisted systems has led to researchers focusing on more effective communication technologies that can mimic human interactions as well as understand natural languages and human emotions. The problem of information overload in every sector, including business, healthcare, education etc., has led to an increase in unstructured data, which is considered not to be useful. Natural language processing (NLP) in this context is one of the effective technologies that can be integrated with advanced technologies, such as machine learning, artificial intelligence, and deep learning, to improve the process of understanding and processing the natural language. This can enable human-computer interaction in a more effective way as well as allow for the analysis and formatting of large volumes of unusable and unstructured data/text in various industries. This will deliver meaningful outcomes that can enhance decision-making and thus improve operational efficiency. Focusing on this aspect, this chapter explains the concept of NLP, its history and development, while also reviewing its application in various industrial sectors

    Socially Cognizant Robotics for a Technology Enhanced Society

    Full text link
    Emerging applications of robotics, and concerns about their impact, require the research community to put human-centric objectives front-and-center. To meet this challenge, we advocate an interdisciplinary approach, socially cognizant robotics, which synthesizes technical and social science methods. We argue that this approach follows from the need to empower stakeholder participation (from synchronous human feedback to asynchronous societal assessment) in shaping AI-driven robot behavior at all levels, and leads to a range of novel research perspectives and problems both for improving robots' interactions with individuals and impacts on society. Drawing on these arguments, we develop best practices for socially cognizant robot design that balance traditional technology-based metrics (e.g. efficiency, precision and accuracy) with critically important, albeit challenging to measure, human and society-based metrics

    Conversational affective social robots for ageing and dementia support

    Get PDF
    Socially assistive robots (SAR) hold significant potential to assist older adults and people with dementia in human engagement and clinical contexts by supporting mental health and independence at home. While SAR research has recently experienced prolific growth, long-term trust, clinical translation and patient benefit remain immature. Affective human-robot interactions are unresolved and the deployment of robots with conversational abilities is fundamental for robustness and humanrobot engagement. In this paper, we review the state of the art within the past two decades, design trends, and current applications of conversational affective SAR for ageing and dementia support. A horizon scanning of AI voice technology for healthcare, including ubiquitous smart speakers, is further introduced to address current gaps inhibiting home use. We discuss the role of user-centred approaches in the design of voice systems, including the capacity to handle communication breakdowns for effective use by target populations. We summarise the state of development in interactions using speech and natural language processing, which forms a baseline for longitudinal health monitoring and cognitive assessment. Drawing from this foundation, we identify open challenges and propose future directions to advance conversational affective social robots for: 1) user engagement, 2) deployment in real-world settings, and 3) clinical translation

    Socially Believable Robots

    Get PDF
    Long-term companionship, emotional attachment and realistic interaction with robots have always been the ultimate sign of technological advancement projected by sci-fi literature and entertainment industry. With the advent of artificial intelligence, we have indeed stepped into an era of socially believable robots or humanoids. Affective computing has enabled the deployment of emotional or social robots to a certain level in social settings like informatics, customer services and health care. Nevertheless, social believability of a robot is communicated through its physical embodiment and natural expressiveness. With each passing year, innovations in chemical and mechanical engineering have facilitated life-like embodiments of robotics; however, still much work is required for developing a “social intelligence” in a robot in order to maintain the illusion of dealing with a real human being. This chapter is a collection of research studies on the modeling of complex autonomous systems. It will further shed light on how different social settings require different levels of social intelligence and what are the implications of integrating a socially and emotionally believable machine in a society driven by behaviors and actions

    Development Issues of Healthcare Robots : Compassionate Communication for Older Adults with Dementia

    Get PDF
    Although progress is being made in affective computing, issues remain in enabling the effective expression of compassionate communication by healthcare robots. Identifying, describing and reconciling these concerns are important in order to provide quality contemporary healthcare for older adults with dementia. The purpose of this case study was to explore the development issues of healthcare robots in expressing compassionate communication for older adults with dementia. An exploratory descriptive case study was conducted with the Pepper robot and older adults with dementia using high-tech digital cameras to document significant communication proceedings that occurred during the activities. Data were collected in December 2020. The application program for an intentional conversation using Pepper was jointly developed by Tanioka’s team and the Xing Company, allowing Pepper’s words and head movements to be remotely controlled. The analysis of the results revealed four development issues, namely, (1) accurate sensing behavior for “listening” to voices appropriately and accurately interacting with subjects; (2) inefficiency in “listening” and “gaze” activities; (3) fidelity of behavioral responses; and (4) deficiency in natural language processing AI development, i.e., the ability to respond actively to situations that were not pre-programmed by the developer. Conversational engagements between the Pepper robot and patients with dementia illustrated a practical usage of technologies with artificial intelligence and natural language processing. The development issues found in this study require reconciliation in order to enhance the potential for healthcare robot engagement in compassionate communication in the care of older adults with dementia

    A Reference Software Architecture for Social Robots

    Full text link
    Social Robotics poses tough challenges to software designers who are required to take care of difficult architectural drivers like acceptability, trust of robots as well as to guarantee that robots establish a personalised interaction with their users. Moreover, in this context recurrent software design issues such as ensuring interoperability, improving reusability and customizability of software components also arise. Designing and implementing social robotic software architectures is a time-intensive activity requiring multi-disciplinary expertise: this makes difficult to rapidly develop, customise, and personalise robotic solutions. These challenges may be mitigated at design time by choosing certain architectural styles, implementing specific architectural patterns and using particular technologies. Leveraging on our experience in the MARIO project, in this paper we propose a series of principles that social robots may benefit from. These principles lay also the foundations for the design of a reference software architecture for Social Robots. The ultimate goal of this work is to establish a common ground based on a reference software architecture to allow to easily reuse robotic software components in order to rapidly develop, implement, and personalise Social Robots

    Expressing Robot Personality through Talking Body Language

    Get PDF
    Social robots must master the nuances of human communication as a mean to convey an effective message and generate trust. It is well-known that non-verbal cues are very important in human interactions, and therefore a social robot should produce a body language coherent with its discourse. In this work, we report on a system that endows a humanoid robot with the ability to adapt its body language according to the sentiment of its speech. A combination of talking beat gestures with emotional cues such as eye lightings, body posture of voice intonation and volume permits a rich variety of behaviors. The developed approach is not purely reactive, and it easily allows to assign a kind of personality to the robot. We present several videos with the robot in two different scenarios, and showing discrete and histrionic personalities.This work has been partially supported by the Basque Government (IT900-16 and Elkartek 2018/00114), the Spanish Ministry of Economy and Competitiveness (RTI 2018-093337-B-100, MINECO/FEDER, EU)
    • …
    corecore