7 research outputs found

    Using least median of squares for structural superposition of flexible proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The conventional superposition methods use an ordinary least squares (LS) fit for structural comparison of two different conformations of the same protein. The main problem of the LS fit that it is sensitive to outliers, i.e. large displacements of the original structures superimposed.</p> <p>Results</p> <p>To overcome this problem, we present a new algorithm to overlap two protein conformations by their atomic coordinates using a robust statistics technique: least median of squares (LMS). In order to effectively approximate the LMS optimization, the forward search technique is utilized. Our algorithm can automatically detect and superimpose the rigid core regions of two conformations with small or large displacements. In contrast, most existing superposition techniques strongly depend on the initial LS estimating for the entire atom sets of proteins. They may fail on structural superposition of two conformations with large displacements. The presented LMS fit can be considered as an alternative and complementary tool for structural superposition.</p> <p>Conclusion</p> <p>The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. Furthermore, we show that the LMS fit can be extended to multiple level superposition between two conformations with several rigid domains. Our fit tool has produced successful superpositions when applied to proteins for which two conformations are known. The binary executable program for Windows platform, tested examples, and database are available from <url>https://engineering.purdue.edu/PRECISE/LMSfit</url>.</p

    Robust probabilistic superposition and comparison of protein structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structure comparison is a central issue in structural bioinformatics. The standard dissimilarity measure for protein structures is the root mean square deviation (RMSD) of representative atom positions such as α-carbons. To evaluate the RMSD the structures under comparison must be superimposed optimally so as to minimize the RMSD. How to evaluate optimal fits becomes a matter of debate, if the structures contain regions which differ largely - a situation encountered in NMR ensembles and proteins undergoing large-scale conformational transitions.</p> <p>Results</p> <p>We present a probabilistic method for robust superposition and comparison of protein structures. Our method aims to identify the largest structurally invariant core. To do so, we model non-rigid displacements in protein structures with outlier-tolerant probability distributions. These distributions exhibit heavier tails than the Gaussian distribution underlying standard RMSD minimization and thus accommodate highly divergent structural regions. The drawback is that under a heavy-tailed model analytical expressions for the optimal superposition no longer exist. To circumvent this problem we work with a scale mixture representation, which implies a weighted RMSD. We develop two iterative procedures, an Expectation Maximization algorithm and a Gibbs sampler, to estimate the local weights, the optimal superposition, and the parameters of the heavy-tailed distribution. Applications demonstrate that heavy-tailed models capture differences between structures undergoing substantial conformational changes and can be used to assess the precision of NMR structures. By comparing Bayes factors we can automatically choose the most adequate model. Therefore our method is parameter-free.</p> <p>Conclusions</p> <p>Heavy-tailed distributions are well-suited to describe large-scale conformational differences in protein structures. A scale mixture representation facilitates the fitting of these distributions and enables outlier-tolerant superposition.</p

    Three dimensional shape comparison of flexible proteins using the local-diameter descriptor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Techniques for inferring the functions of the protein by comparing their shape similarity have been receiving a lot of attention. Proteins are functional units and their shape flexibility occupies an essential role in various biological processes. Several shape descriptors have demonstrated the capability of protein shape comparison by treating them as rigid bodies. But this may give rise to an incorrect comparison of flexible protein shapes.</p> <p>Results</p> <p>We introduce an efficient approach for comparing flexible protein shapes by adapting a <it>local diameter </it>(LD) <it>descriptor</it>. The LD descriptor, developed recently to handle skeleton based shape deformations <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>, is adapted in this work to capture the invariant properties of shape deformations caused by the motion of the protein backbone. Every sampled point on the protein surface is assigned a value measuring the diameter of the 3D shape in the neighborhood of that point. The LD descriptor is built in the form of a one dimensional histogram from the distribution of the diameter values. The histogram based shape representation reduces the shape comparison problem of the flexible protein to a simple distance calculation between 1D feature vectors. Experimental results indicate how the LD descriptor accurately treats the protein shape deformation. In addition, we use the LD descriptor for protein shape retrieval and compare it to the effectiveness of conventional shape descriptors. A sensitivity-specificity plot shows that the LD descriptor performs much better than the conventional shape descriptors in terms of consistency over a family of proteins and discernibility across families of different proteins.</p> <p>Conclusion</p> <p>Our study provides an effective technique for comparing the shape of flexible proteins. The experimental results demonstrate the insensitivity of the LD descriptor to protein shape deformation. The proposed method will be potentially useful for molecule retrieval with similar shapes and rapid structure retrieval for proteins. The demos and supplemental materials are available on <url>https://engineering.purdue.edu/PRECISE/LDD</url>.</p

    IDSS: deformation invariant signatures for molecular shape comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many molecules of interest are flexible and undergo significant shape deformation as part of their function, but most existing methods of molecular shape comparison (MSC) treat them as rigid bodies, which may lead to incorrect measure of the shape similarity of flexible molecules.</p> <p>Results</p> <p>To address the issue we introduce a new shape descriptor, called Inner Distance Shape Signature (IDSS), for describing the 3D shapes of flexible molecules. The inner distance is defined as the length of the shortest path between landmark points within the molecular shape, and it reflects well the molecular structure and deformation without explicit decomposition. Our IDSS is stored as a histogram which is a probability distribution of inner distances between all sample point pairs on the molecular surface. We show that IDSS is insensitive to shape deformation of flexible molecules and more effective at capturing molecular structures than traditional shape descriptors. Our approach reduces the 3D shape comparison problem of flexible molecules to the comparison of IDSS histograms.</p> <p>Conclusion</p> <p>The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. We demonstrate the effectiveness of IDSS within a molecular search engine application for a benchmark containing abundant conformational changes of molecules. Such comparisons in several thousands per second can be carried out. The presented IDSS method can be considered as an alternative and complementary tool for the existing methods for rigid MSC. The binary executable program for Windows platform and database are available from <url>https://engineering.purdue.edu/PRECISE/IDSS</url>.</p

    Using diffusion distances for flexible molecular shape comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many molecules are flexible and undergo significant shape deformation as part of their function, and yet most existing molecular shape comparison (MSC) methods treat them as rigid bodies, which may lead to incorrect shape recognition.</p> <p>Results</p> <p>In this paper, we present a new shape descriptor, named Diffusion Distance Shape Descriptor (DDSD), for comparing 3D shapes of flexible molecules. The diffusion distance in our work is considered as an average length of paths connecting two landmark points on the molecular shape in a sense of inner distances. The diffusion distance is robust to flexible shape deformation, in particular to topological changes, and it reflects well the molecular structure and deformation without explicit decomposition. Our DDSD is stored as a histogram which is a probability distribution of diffusion distances between all sample point pairs on the molecular surface. Finally, the problem of flexible MSC is reduced to comparison of DDSD histograms.</p> <p>Conclusions</p> <p>We illustrate that DDSD is insensitive to shape deformation of flexible molecules and more effective at capturing molecular structures than traditional shape descriptors. The presented algorithm is robust and does not require any prior knowledge of the flexible regions.</p

    Molecular dynamics study of the allosteric control mechanisms of the glycolytic pathway

    Get PDF
    There is a growing body of interest to understand the regulation of allosteric proteins. Allostery is a phenomenon of protein regulation whereby binding of an effector molecule at a remote site affects binding and activity at the protein‟s active site. Over the years, these sites have become popular drug targets as they provide advantages in terms of selectivity and saturability. Both experimental and computational methods are being used to study and identify allosteric sites. Although experimental methods provide us with detailed structures and have been relatively successful in identifying these sites, they are subject to time and cost limitations. In the present dissertation, Molecular Dynamics Simulations (MDS) and Principal Component Analysis (PCA) have been employed to enhance our understanding ofallostery and protein dynamics. MD simulations generated trajectories which were then qualitatively assessed using PCA. Both of these techniques were applied to two important trypanosomatid drug targets and controlling enzymes of the glycolytic pathway - pyruvate kinase (PYK) and phosphofructokinase (PFK). Molecular Dynamics simulations were first carried out on both the effector bound and unbound forms of the proteins. This provided a framework for direct comparison and inspection of the conformational changes at the atomic level. Following MD simulations, PCA was run to further analyse the motions. The principal components thus captured are in quantitative agreement with the previously published experimental data which increased our confidence in the reliability of our simulations. Also, the binding of FBP affects the allosteric mechanism of PYK in a very interesting way. The inspection of the vibrational modes reveals interesting patterns in the movement of the subunits which differ from the conventional symmetrical pattern. Also, lowering of B-factors on effector binding provides evidence that the effector is not only locking the R-state but is also acting as a general heat-sink to cool down the whole tetramer. This observation suggests that protein rigidity and intrinsic heat capacity are important factors in stabilizing allosteric proteins. Thus, this work also provides new and promising insights into the classical Monod-Wyman-Changeux model of allostery
    corecore