28,278 research outputs found

    Comparison of Simple Graphical Process Models

    Get PDF
    Comparing the structure of graphical process models can reveal a number of process variations. Since most contemporary norms for process modelling rely on directed connectivity of objects in the model, connections between objects form sequences which can be translated into performing scenarios. Whereas sequences can be tested for completeness in performing process activities using simulation methods, the similarity or difference in static characteristics of sequences in different model variants are difficult to explore. The goal of the paper is to test the application of a method for comparison of graphical models by analyzing and comparing static characteristics of process models. Consequently, a metamodel for process models is developed followed by a comparison procedure conducted using a graphical model comparison algorithm

    Positivity for Gaussian graphical models

    Full text link
    Gaussian graphical models are parametric statistical models for jointly normal random variables whose dependence structure is determined by a graph. In previous work, we introduced trek separation, which gives a necessary and sufficient condition in terms of the graph for when a subdeterminant is zero for all covariance matrices that belong to the Gaussian graphical model. Here we extend this result to give explicit cancellation-free formulas for the expansions of nonzero subdeterminants.Comment: 16 pages, 3 figure

    Spin Networks and Quantum Gravity

    Full text link
    We introduce a new basis on the state space of non-perturbative quantum gravity. The states of this basis are linearly independent, are well defined in both the loop representation and the connection representation, and are labeled by a generalization of Penrose's spin netoworks. The new basis fully reduces the spinor identities (SU(2) Mandelstam identities) and simplifies calculations in non-perturbative quantum gravity. In particular, it allows a simple expression for the exact solutions of the Hamiltonian constraint (Wheeler-DeWitt equation) that have been discovered in the loop representation. Since the states in this basis diagnolize operators that represent the three geometry of space, such as the area and volumes of arbitrary surfaces and regions, these states provide a discrete picture of quantum geometry at the Planck scale.Comment: 42 page

    On the causal interpretation of acyclic mixed graphs under multivariate normality

    Full text link
    In multivariate statistics, acyclic mixed graphs with directed and bidirected edges are widely used for compact representation of dependence structures that can arise in the presence of hidden (i.e., latent or unobserved) variables. Indeed, under multivariate normality, every mixed graph corresponds to a set of covariance matrices that contains as a full-dimensional subset the covariance matrices associated with a causally interpretable acyclic digraph. This digraph generally has some of its nodes corresponding to hidden variables. We seek to clarify for which mixed graphs there exists an acyclic digraph whose hidden variable model coincides with the mixed graph model. Restricting to the tractable setting of chain graphs and multivariate normality, we show that decomposability of the bidirected part of the chain graph is necessary and sufficient for equality between the mixed graph model and some hidden variable model given by an acyclic digraph

    All-Helicity Symbol Alphabets from Unwound Amplituhedra

    Full text link
    We review an algorithm for determining the branch points of general amplitudes in planar N=4\mathcal{N}=4 super-Yang-Mills theory from amplituhedra. We demonstrate how to use the recent reformulation of amplituhedra in terms of `sign flips' in order to streamline the application of this algorithm to amplitudes of any helicity. In this way we recover the known branch points of all one-loop amplitudes, and we find an `emergent positivity' on boundaries of amplituhedra.Comment: 38 pages, 5 figures, 1 big table; v2: minor corrections and improvement

    Controllability and observability of grid graphs via reduction and symmetries

    Full text link
    In this paper we investigate the controllability and observability properties of a family of linear dynamical systems, whose structure is induced by the Laplacian of a grid graph. This analysis is motivated by several applications in network control and estimation, quantum computation and discretization of partial differential equations. Specifically, we characterize the structure of the grid eigenvectors by means of suitable decompositions of the graph. For each eigenvalue, based on its multiplicity and on suitable symmetries of the corresponding eigenvectors, we provide necessary and sufficient conditions to characterize all and only the nodes from which the induced dynamical system is controllable (observable). We discuss the proposed criteria and show, through suitable examples, how such criteria reduce the complexity of the controllability (respectively observability) analysis of the grid
    • ā€¦
    corecore